-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathisae-beamer-template.tex
693 lines (619 loc) · 22.1 KB
/
isae-beamer-template.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
% A LaTeX (non-official) template for ISAE projects reports
% Copyright (C) 2014 Damien Roque
% Version: 0.2
% Author: Damien Roque <damien.roque_AT_isae.fr>
\documentclass{beamer}
\usepackage[utf8]{inputenc}
\usepackage[english]{babel}
\usepackage{palatino}
\usepackage{graphicx}
\graphicspath{{./images/}}
\usepackage{colortbl}
\usepackage{xcolor}
\usepackage{tikz}
\usetikzlibrary{shapes,arrows}
\usetikzlibrary{mindmap,trees}
\usetikzlibrary{calc}
\usepackage{pgfplots}
\pgfplotsset{compat=newest}
\pgfplotsset{plot coordinates/math parser=false}
\newlength\figureheight
\newlength\figurewidth
\usepackage{ifthen}
\usepackage{subfigure}
\usepackage{amsthm}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsmath}
\usepackage{eurosym}
\usepackage{wasysym}
\usepackage{tikz}
\usepackage{hyperref}
\usepackage{url}
\usepackage{epstopdf}
\usepackage{tkz-euclide}
\usepackage[font=small]{caption}
\usepackage{tkz-euclide}
\usepackage{animate}
\usetkzobj{all}
\DeclareCaptionFormat{person}{ #3 }
\epstopdfDeclareGraphicsRule{.gif}{png}{.png}{convert gif:#1 png:\OutputFile}
\AppendGraphicsExtensions{.gif}
% Printing on 2 slides per page
%\pgfpagesuselayout{2 on 1}[a4paper,border shrink=5mm]
% My macros...
\newcommand*{\SET}[1] {\ensuremath{\boldsymbol{#1}}}
\newcommand*{\VEC}[1] {\ensuremath{\boldsymbol{#1}}}
\newcommand*{\MAT}[1] {\ensuremath{\boldsymbol{#1}}}
\newcommand*{\OP}[1] {\ensuremath{\text{#1}}}
\newcommand*{\NORM}[1] {\ensuremath{\left\|#1\right\|}}
\newcommand*{\DPR}[2] {\ensuremath{\left \langle #1,#2 \right \rangle}}
\newcommand*{\calbf}[1] {\ensuremath{\boldsymbol{\mathcal{#1}}}}
\newcommand*{\shift}[1] {\ensuremath{\boldsymbol{#1}}}
\newcommand{\eqdef}{\stackrel{\mathrm{def}}{=}}
\newcommand{\argmax}{\operatornamewithlimits{argmax}}
\newcommand{\argmin}{\operatornamewithlimits{argmin}}
\newcommand{\ud}{\, \text{d}}
\newcommand{\vect}{\text{Vect}}
\newcommand{\sinc}{\text{sinc}}
\newcommand{\esp}{\ensuremath{\mathbb{E}}}
\newcommand{\hilbert}{\ensuremath{\mathcal{H}}}
\newcommand{\fourier}{\ensuremath{\mathcal{F}}}
\newcommand{\sgn}{\text{sgn}}
\newcommand{\intTT}{\int_{-T}^{T}}
\newcommand{\intT}{\int_{-\frac{T}{2}}^{\frac{T}{2}}}
\newcommand{\intinf}{\int_{-\infty}^{+\infty}}
\newcommand{\Sh}{\ensuremath{\boldsymbol{S}}}
\newcommand{\Cpx}{\ensuremath{\mathbb{C}}}
\newcommand{\R}{\ensuremath{\mathbb{R}}}
\newcommand{\Z}{\ensuremath{\mathbb{Z}}}
\newcommand{\N}{\ensuremath{\mathbb{N}}}
\newcommand{\K}{\ensuremath{\mathbb{K}}}
\newcommand{\reel}{\mathcal{R}}
\newcommand{\imag}{\mathcal{I}}
\newcommand{\cmnr}{c_{m,n}^\reel}
\newcommand{\cmni}{c_{m,n}^\imag}
\newcommand{\cnr}{c_{n}^\reel}
\newcommand{\cni}{c_{n}^\imag}
\newcommand{\LR}{\mathcal{L}_2(\R)}
\newcommand{\tproto}{g}
\newcommand{\rproto}{\check{g}}
\newcommand{\Tproto}{G}
\newcommand{\Rproto}{\check{G}}
%\theoremstyle{definition}
%\newtheorem{definition}{Définition}[subsection]
\theoremstyle{remark}
\newtheorem{remarque}{Remarque}[subsection]
\theoremstyle{plain}
\newtheorem{propriete}{Propriété}[subsection]
\newtheorem{exemple}{Exemple}[subsection]
% Choosing a main theme and a color theme
\mode<presentation> {
%\usetheme{Warsaw}
%\usetheme{Madrid}
%\usetheme{Frankfurt}
\usecolortheme{seahorse}
}
\setbeamertemplate{footline}[frame number]
\addtobeamertemplate{frametitle}{}{%
\vskip-0.2em
\begin{tikzpicture}[remember picture,overlay]
\node[anchor=north east,yshift=4pt] at (current page.north east) {\includegraphics[height=0.8cm]{images/logo-isae-long-sans-texte}};
\end{tikzpicture}}
\title[MFEGO]{High Dimensional Efficient Global Optimization via Multi-Fidelity Surrogate Modeling}
%\author[M. Meliani]{\small Mostafa Meliani\inst{*} }
\date{September 26, 2018}
\institute[ISAE/DEOS]
{
\vspace{0.1cm}
\begin{minipage}{\linewidth}
\begin{center}
\begin{minipage}{0.4\textwidth}
\begin{flushleft}
\emph{Author:}\\
Mr. Mostafa \textsc{Meliani}
\end{flushleft}
\end{minipage}%
\begin{minipage}{0.4\textwidth}
\begin{flushright}
\emph{Supervisors:} \\
Dr.~Nathalie \textsc{Bartoli}\\
Pr.~Joseph \textsc{Morlier}\\
Dr.~Mohamed A. \textsc{Bouhlel}\\
Pr.~Joaquim R.R.A \textsc{Martins}
\end{flushright}
\end{minipage}
\vspace{1em}\\
\includegraphics[width=0.6in]{images/logo-isae-long}\hspace{0.8in}
\includegraphics[width=0.4in]{images/umich}\hspace{0.6in}
\includegraphics[width=1in]{images/onera}
\end{center}
\end{minipage}
}
% Clear the navigation bar
\setbeamertemplate{navigation symbols}{}
\subject{High Dimensional Efficient Global Optimization via Multi-Fidelity surrogate modeling}
\begin{document}
\begin{frame}
\titlepage
\end{frame}
\begin{frame}
\frametitle{Plan}
\small
\tableofcontents
\normalsize
\end{frame}
% Recall the outline at each section
\AtBeginSection[]
{%
\begin{frame}
\frametitle{Plan}
\small
%\tableofcontents[hideothersubsections]
%\tableofcontents[currentsubsection,hideothersubsections]
\tableofcontents[currentsection]
\normalsize
\end{frame}
}
\section{Introduction}
\label{sec:partie0}
\begin{frame}
\frametitle{Introduction}
\noindent
\begin{tikzpicture}
\node(HF) at (0,0) {\includegraphics[width=0.3\textwidth]{Introduction/HF}};
\node(DOE) at (4,0) {\includegraphics[width=0.3\textwidth]{Introduction/LHS}};
\node(SM) at (8,0) {\includegraphics[width=0.3\textwidth]{Introduction/SM}};
\node[below right] at (HF.south west) {\fontsize{7pt}{7pt}\selectfont HF simulation \cite{HF_CFD}};
\node[below right] at (DOE.south west) {\fontsize{7pt}{7pt}\selectfont Design of Experiment};
\node[below right] at (SM.south west) {\fontsize{7pt}{7pt}\selectfont Surrogate model};
\draw [-latex, ultra thick, red] (HF) to(DOE);
\draw [-latex, ultra thick, red] (DOE) to(SM);
\end{tikzpicture}%
\\
\small
\begin{itemize}
\item[--] High-Fidelity computer experiments are too expensive to perform direct Design Optimization, Sensitivity Analysis, Design Exploration...
\item[--] Surrogate models can be used to perform these tasks at
lower computational costs.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Introduction -- Motivations}
\noindent
\begin{tikzpicture}
\node(HF) at (0,0) {\includegraphics[width=0.3\textwidth]{Fidelities/LLT}};
\node(DOE) at (4,0) {\includegraphics[width=0.3\textwidth]{Fidelities/VLM}};
\node(SM) at (8,0) {\includegraphics[width=0.3\textwidth]{Fidelities/RANS}};
\node[below right] at (HF.south west) {\fontsize{7pt}{7pt}\selectfont Lifiting Line Theory};
\node[below right] at (DOE.south west) {\fontsize{7pt}{7pt}\selectfont Vortex Lattice Method \cite{katz2001low}};
\node[below right] at (SM.south west) {\fontsize{7pt}{7pt}\selectfont RANS CFD \cite{m6-wing}};
%\draw [-latex, ultra thick, red] (HF) to(DOE);
%\draw [-latex, ultra thick, red] (DOE) to(SM);
\end{tikzpicture}%
\\
\begin{itemize}
\item[--] Reduce computational costs further: use lower fidelity knowledge to enhance high-fidelity models.
\end{itemize}
%-- Develop adaptive strategies for the enrichment of multi-fidelity surrogate models.
\vspace{1em}
\textbf{Project objective:}
\begin{itemize}
\item[--] Global optimization of an aerodynamic shape using multi-fidelity information sources.
\end{itemize}
\end{frame}
\section{Surrogate Modeling}
\label{sec:partie0}
\subsection{Kriging}
\begin{frame}
\frametitle{Kriging}
\begin{columns}
\begin{column}{0.65\linewidth}
\begin{center}
\includegraphics[width=0.95\linewidth]{Kriging/lmkmvar}
\captionof{figure}{Mean and variance of a Kriging model}
\end{center}
\end{column}
\begin{column}{0.35\linewidth}
\only<1->{\begin{center}
\scriptsize
\begin{equation*}
\hat{y}(x) = \underbrace{m(x)}_\text{Regression term} + Z(x; \theta)
\end{equation*}
\end{center}}
%\only<3>{\begin{center}
% \includegraphics[width=5cm]{Kriging/lmkm}
% \captionof{figure}{Kriging model}
%\end{center}}
\begin{center}
\includegraphics[width=0.95\linewidth]{Kriging/corr}
\captionof{figure}{\fontsize{7pt}{7pt}\selectfont correlation model \cite{ForresterBook}}
\end{center}
\end{column}
\end{columns}
\normalsize
\small
\begin{itemize}
\item[--] The Kriging model considers the 'errors' as deviations to be modeled by a Gaussian Process through a correlation function.
\end{itemize}
\end{frame}
\subsection{Multi-Fidelity co-Kriging}
\label{sec:partie2}
\begin{frame}[fragile]
\frametitle{Multi-Fidelity co-Kriging}
\begin{center}
\includegraphics[width=7cm]{Kriging/illust_multi}
\captionof{figure}{Multi-fidelity surrogate modeling illustration}
\end{center}
\begin{itemize}
\item[--] How to best use low-fidelity information to enhance the high-fidelity model?
\end{itemize}
\end{frame}
\begin{frame}[fragile]
\frametitle{Multi-Fidelity co-Kriging -- Formulations}
\begin{columns}
\begin{column}{0.45\linewidth}
\only<1->{
\begin{tikzpicture}[scale=3,cap=round]
% Local definitions
\def\costhirty{0.8660256}
\coordinate (A) at (0.8, 0) {};\
\coordinate (C) at (1, 0.2) {};
\coordinate (0) at (1, 0) {};
% Colors
\colorlet{HF}{green!50!black}
\colorlet{LF}{red}
\colorlet{gamma}{orange!80!black}
\colorlet{deltac}{blue}
\colorlet{angle}{black}
% Styles
\tikzstyle{axes}=[]
\tikzstyle{important line}=[very thick]
\tikzstyle{information text}=[rounded corners,fill=red!10,inner sep=1ex]
% The graphic
\draw[style=help lines,step=0.5cm] (-0.4,-0.4) grid (1.4,0.9);
%\draw (0,0) circle (1cm);
\begin{scope}[style=axes]
\draw[->] (-0.5,0) -- (1.5,0) node[right]{}; %{$x$};
\draw[->] (0,-0.5) -- (0,1) node[above]{}; %{$y$};
%% Drawing 0.5 and 1
%\foreach \x/\xtext in {-1, -.5/-\frac{1}{2}, 1}
\draw[xshift=1 cm, angle] (0pt,1pt) -- (0pt,-1pt) node[below,fill=white]{$\rho f_{LF}$};
%{$\xtext$};
% \foreach \y/\ytext in {-1, -.5/-\frac{1}{2}, .5/\frac{1}{2}, 1}
% \draw[yshift=\y cm] (1pt,0pt) -- (-1pt,0pt) node[left,fill=white]
% {$\ytext$};
%% end drawing 0.5 and 1
\end{scope}
\filldraw[fill=green!20,draw=green!50!black] (0,0) -- (4mm,0pt) arc(0:30:4mm);
\draw (15:3mm) node[angle] {\tiny corr};
\draw[style=important line,angle]
(0,0) -- (1,0);
\draw[style=important line,LF]
(0,0) -- node[below=2pt] {$f_{LF}$} (\costhirty/2,0);
\draw[style=important line,deltac] (1,0) --
node [right=1pt]
{$\delta$} (intersection of 0,0--30:1cm and 1,0--1,1) coordinate (t);
\draw[style=important line,gamma]
(\costhirty/2,0) -- node[below=1pt] {$\gamma$} (t);
\tkzMarkRightAngle[draw=blue,size=.1](A,0,C);
\draw[style=important line,HF] (0,0) --node[above=2pt] {$f_{HF}$} (t) ;
\end{tikzpicture}
}
\end{column}
\begin{column}{0.45\linewidth}
\scriptsize
-- Additive formulation \cite{VFM}
\begin{equation*}
f_{HF}(x) = f_{LF}(x) + \gamma(x)
\label{eq:vfm}
\end{equation*}
-- Kennedy-O'Hagan \cite{KeO}
\begin{equation*}
\left\{
\begin{array}{ll}
&f_{HF}(x) = \rho f_{LF}(x) + \delta(x)\\
&f_{LF}(\cdot) \perp \delta(\cdot)
\end{array}
\right.
\label{eq:mfk}
\end{equation*}
\end{column}
\end{columns}
\normalsize
\only<1->{\begin{itemize}
\item[--] The addition of the term $\rho$ makes the multi-fidelity learning more robust to poor correlation as well as differences in modelization.
\end{itemize}}
\end{frame}
\begin{frame}[fragile]
\frametitle{Multi-Fidelity co-Kriging -- Toy Problem}
\begin{columns}
\begin{column}{0.6\linewidth}
\begin{center}
\fontsize{7pt}{7pt}\selectfont Animation: evolution of model for increasing signal correlations
\[f_{HF}(x) = \rho f_{LF}(x) + \delta(x)\]
\animategraphics[loop,width=\linewidth] {2}{Kriging/cos_corr_}{0}{10}
\end{center}
\end{column}
\begin{column}{0.4\linewidth}
Functions definition for \(\alpha \in [0, \pi/2]\):
\begin{align*}
& f_{HF}(x) = \cos(x) \\
& f_{LF}(x) = \textcolor{orange!80!black}{2} \cos(x+\textcolor{orange!80!black}{\alpha})
\end{align*}
HF-LF correlation:
\[\operatorname{corr} (f_{HF},f_{LF}) = cos(\alpha)\]
\end{column}
\end{columns}
\small
\begin{itemize}
\item[--]The use of mutli-fidelity information sources reduces the amount of information to be retrieved by the highest fidelities.
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Multi-Fidelity co-Kriging -- Contributions}
\begin{columns}
\begin{column}{0.4\linewidth}
\begin{center}
\end{center}
Recursive formulation \cite{legratiet:tel-00866770}:
\begin{align*}
&\mu_{k} = \rho_{k-1}\;\mu_{k-1} + \mu_{\delta_k} \\
&\sigma^2_{k} = \rho_{k-1}^2\;\sigma^2_{k-1}+\sigma^2_{\delta_k} \label{eq:rec_sigma_l}
\end{align*}
-- Nested DOEs:\[X_{HF}=X_l \subseteq X_{l-1} \ldots \subseteq X_0=X_{LF} \]
\end{column}
\begin{column}{0.6\linewidth}
\scriptsize
\begin{itemize}
\item[$\ast$] MFK \cite{vauclin2015,MFK_OpenMDAO}
\item[$\ast$] MFKPLS - MFKPLSK (high dimension)
\item[$\ast$] Analytical derivatives w.r.t design variables
\item[$\ast$] Noise Estimation
\item[$\ast$] Regression/ Re-interpolation
\item[$\ast$] multi-fidelity data pre-processing
\end{itemize}
\normalsize
\end{column}
\end{columns}
\begin{columns}
\begin{column}{0.75\linewidth}
\small
Open source Python library: Surrogate Modeling Toolbox (SMT)
\url{https://github.com/SMTOrg/smt}
\end{column}
\begin{column}{0.25\linewidth}
\includegraphics[width=0.8\linewidth]{images/logosmt}
\end{column}
\end{columns}
\end{frame}
\section{Bayesian Optimization}
\label{sec:partie2}
\begin{frame}[fragile]
\frametitle{Bayesian Optimization}
\begin{columns}
\begin{column}{0.45\linewidth}
\begin{itemize}
\item[\scriptsize$\blacksquare$] \only<1->{\textbf{Gradient-based}: minimize the objective gradient norm.}
\item[\scriptsize$\blacksquare$] \only<1->{\textbf{Bayesian (gradient-free)}: minimize the expected deviation from the extremum of the studied function.}
\end{itemize}
\end{column}
\begin{column}{0.55\linewidth}
\begin{center}
\includegraphics[width=6cm]{Bayesian/vartrue}
%\captionof{figure}{Multi-Fo co-Kriging characteristic length evolution w.r.t correlation}
\end{center}
\end{column}
\end{columns}
\only<2->{
\begin{itemize}
\item[--] Prediction and uncertainty of the model are used in sequential strategies to balance Exploration/Exploitation
\item[--] Bayesian optimization is a global optimization.
\end{itemize}
}
\end{frame}
\subsection{Efficient Global Optimizaton: EGO}
\begin{frame}
\frametitle{Bayesian Optimization -- EGO}
\begin{columns}
\begin{column}{0.45\linewidth}
\small
Efficient Global Optimization \cite{Jones:1998:EGO:596070.596218}
\vspace{0.3cm}
-- EI criterion \cite{Mockus1975}:\[ E[I(x)] = E[\max(f_{min}-Y, 0)]\]
\end{column}
\begin{column}{0.55\linewidth}
\begin{center}
\includegraphics[width=6cm]{Bayesian/EImax}
%\captionof{figure}{Multi-Fo co-Kriging characteristic length evolution w.r.t correlation}
\end{center}
\end{column}
\end{columns}
\normalsize
\begin{itemize}
\item[--] EI expresses a certain balance between Exploitation and Exploration based on the mean and variance of the Kriging model.
\end{itemize}
\end{frame}
\subsection{Multi-Fidelity Efficient Global Optimizaton: MFEGO}
\begin{frame}[fragile]
\frametitle{Bayesian Optimization -- MFEGO}
\only<1->{MFEGO:
\begin{itemize}
\item most promising point: EI criterion\[\textcolor{orange!80!blue}{x^*} = \argmax_{x} \left(E[I(x)]\right)\]
\item choice of levels of enrichment: trade-off information gain/cost \[\textcolor{orange!80!blue}{k^*} = \argmax_{k \in (0,\ldots,l)} \quad \frac{\sigma_{red}^{2}(k,\textcolor{orange!80!blue}{x^*})}{f(c_{k})}\]
\end{itemize}
}
\only<2->{
\small
\begin{itemize}
\item[$\Rightarrow$] By using low-fidelity to reduce the uncertainty we reduce the Exploration contribution to the EI criterion
\item[$\Rightarrow$] High-fidelity is used for Exploitation and model enhancement
\end{itemize}}
\end{frame}
\begin{frame}[fragile]
\frametitle{MFEGO Optimization -- Toy Problem}
\begin{columns}
\begin{column}{0.65\linewidth}
\begin{center}
\animategraphics[loop, controls,width=\linewidth] {1}{Bayesian/foo}{1}{10}
\end{center}
\end{column}
\begin{column}{0.35\linewidth}
\begin{center}
\includegraphics[width=\textwidth]{Bayesian/testcase}
\end{center}
\tiny
\begin{align*}
f_{HF}(x) =&\;(6 x -2)^2 \times \sin(2(6 x - 2))\\
f_{LF}(x) =&\;0.5 f_{HF} + 10 (x-0.5) - 5
\end{align*}
Cost ratio: 1/1000
\begin{tabular} { l c c c }
\hline
& HF & LF & Cost \\
\hline
\hline
MFEGO & \textcolor{green!40!black}{3}+2 & \textcolor{green!40!black}{6}+9 & \textcolor{blue}{5.015}\\
EGO & \textcolor{green!40!black}{4}+11 & - & \textcolor{red}{15}\\
\hline
\end{tabular}
\captionof{table}{\fontsize{7pt}{7pt}\selectfont Toy problem optimization summary}
\end{column}
\end{columns}
\end{frame}
\section{Application to Airfoil Shape Optimization}
\label{sec:partie2}
\begin{frame}[fragile]
\frametitle{Airfoil shape optimization -- Parametrization}
\begin{columns}
\begin{column}{0.6\textwidth}
\begin{tikzpicture}
\node(HF) at (0,0) {\includegraphics[width=0.8\textwidth]{images/thickness_modes}};
\node(SM) at (0,-2) {\includegraphics[width=\textwidth]{images/camber_modes}};
\end{tikzpicture}
\captionof{figure}{First thickness (above) and camber (below) modes \cite{Jichao}}
\end{column}
\begin{column}{0.4\linewidth}
\scriptsize
Parametrization \cite{Jichao}:
Mode decomposition of an airfoil database.
Up to 14 modes available (7 camber + 7 thickness modes).
\begin{itemize}
\item[$\ast$] HF: RANS solver (ADflow)
\item[$\ast$] LF: Xfoil \cite{drela1989xfoil}
\end{itemize}
Cost ratio: 1/200
Reference: SNOPT \cite{gill2005snopt}
\end{column}
\end{columns}
\end{frame}
\begin{frame}
\frametitle{Airfoil shape -- Unconstrained optimization}
\begin{center}
\only<1>{
\begin{tikzpicture}
\node(HF) at (0,0) {\includegraphics[width=0.55\textwidth]{Results/run_full_3}};
\node(DOE) at (0.5\textwidth,0) {\includegraphics[width=0.55\textwidth]{Results/same}};
\end{tikzpicture}
}
\only<2>{
\begin{tikzpicture}
\node(HF) at (0,0) {\includegraphics[width=0.55\textwidth]{Results/run_full_3}};
\node(DOE) at (0.5\textwidth,0) {\includegraphics[width=0.55\textwidth]{Results/best_run_same}};
\end{tikzpicture}
}
\only<3>{
\begin{tabular} { l c c c c }
\hline
& HF & LF & Cost & Obj \\
\hline
\hline
EGO & \textcolor{green!40!black}{40} + 30 & - & \textcolor{red}{70} & \textcolor{red}{104.9} \\
MFEGO & \textcolor{green!40!black}{16} + 8 & \textcolor{green!40!black}{744} + 437 & \textcolor{blue}{29.89} & \textcolor{blue}{110.5} \\
SNOPT & \textcolor{green!40!black}{21} & - & 21 & 110.7 \\
\hline
\end{tabular}
\captionof{table}{Comparison of EGO and MFEGO for unconstrained optimization}
\vspace{3em}
}
\end{center}
\begin{itemize}
\item L/D maximization
\item \textcolor{blue}{15} design variables (7 camber + 7 thickness modes + AoA)
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Airfoil shape -- Constrained optimization}
\begin{center}
\only<1>{
\begin{tikzpicture}
\node(HF) at (0,0) {\includegraphics[width=0.55\textwidth]{Results/2constrained}};
\node(DOE) at (0.5\textwidth,0) {\includegraphics[width=0.55\textwidth]{Results/2Constraints_scaled}};
\end{tikzpicture}}
\only<2>{
\begin{center}
\scriptsize
\begin{tabular}{lcccccc}
\hline
& HF & LF & Cost & Obj & Feasible & RMSCV\\
\hline
\hline
EGO & \textcolor{green!40!black}{40} + 60 & - & \textcolor{red}{100} & \textcolor{red}{89.188} & Yes & \textcolor{red}{8.8e-2} \\
MFEGO & \textcolor{green!40!black}{24} + 18 & \textcolor{green!40!black}{964} + 63 & \textcolor{blue}{47.135} & \textcolor{blue}{84.67} & Yes & \textcolor{blue}{4.9e-3} \\
SNOPT & \textcolor{green!40!black}{73} & - & 73 & 84.68 & Yes & - \\
\hline
\end{tabular}
\captionof{table}{Comparison of EGO and MFEGO for constrained optimization}
\end{center}
\normalsize
\(RMSCV = \sqrt[]{\frac{1}{N} \sum_{j=1}^N \left(val_j-target\right)^2}\)
\vspace{1em}
}
\end{center}
-- Use of SEGOMOE framework \cite{bartoli2016improvement}
\begin{itemize}
\item $C_d$ minimization
\item $C_l$, $C_m$ equality constraints
\item \textcolor{blue}{15} design variables (7 camber + 7 thickness modes + AoA)
\end{itemize}
\end{frame}
\section{Conclusion}
\begin{frame}
\frametitle{Conclusion \& Perspectives}
This project has shown it is possible to use multi-fidelity information sources to:
\small
\begin{itemize}
\item enhance surrogate models $\rightarrow$ \textcolor{green!10!orange!90!}{MFK integration in SMT},
\item alleviate dimensionality curse $\rightarrow$ \textcolor{green!10!orange!90!}{MFKPLS -- MFKPLSK},
\item reduce global search cost (global optimizations) $\rightarrow$ \textcolor{green!10!orange!90!}{MFEGO},
\item find better results with lesser cost compared to EGO (and occasionally SNOPT) for multiple constrained and unconstrained problems $\rightarrow$ \textcolor{green!10!orange!90!}{SEGOMOE framework extension}.
\end{itemize}
-- In progress: \textcolor{green!10!orange!90!}{AIAA Aviation 2019 Conference abstract submission}, \textcolor{green!10!orange!90!}{aerostructural optimization test case.}
\vspace{0.3cm}
\normalsize
Work can be done to improve the approach:
\scriptsize
\begin{itemize}
\item hybrid models (a different model adapted to each level of fidelity)
\item multi-fidelity mixture of experts,
\item ...
\end{itemize}
\end{frame}
\begin{frame}
\frametitle{Questions}
\begin{tikzpicture}[overlay]
\node [anchor=center] at (9,2) {\includegraphics[width=0.2\linewidth]{images/fondation}};
\end{tikzpicture}
\begin{center}
Thank you for your attention!
Do you have any questions?
\end{center}
\end{frame}
\newcounter{lastframe}
\setcounter{lastframe}{\insertframenumber}
\begin{frame}[allowframebreaks]{References}
\bibliographystyle{authoryear-fr}
\bibliography{references}
\end{frame}
\setcounter{framenumber}{\thelastframe}
\end{document}