-
Notifications
You must be signed in to change notification settings - Fork 80
/
Copy pathchapter33.m
130 lines (101 loc) · 3.24 KB
/
chapter33.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
%% Analyzing Neural Time Series Data
% Matlab code for Chapter 33
% Mike X Cohen
%
% This code accompanies the book, titled "Analyzing Neural Time Series Data"
% (MIT Press). Using the code without following the book may lead to confusion,
% incorrect data analyses, and misinterpretations of results.
% Mike X Cohen assumes no responsibility for inappropriate or incorrect use of this code.
%% Figure 33.1
figure
subplot(121)
plot(normpdf(-4:.001:4))
axis tight
subplot(122)
a = randn(1000,1);
hist(a,50)
% this histogram was also used in figure 33.3
disp([ 'p_n = ' num2str(sum(a>2)/1000) ])
disp([ 'p_z = ' num2str(1-normcdf(2)) ])
%% Figure 33.5/6
% These figures are generated in the code for chapter 34
%% Figure 33.8
% introduction to bwlabeln and bwconncomp
% create 2D smoothing kernel
[xi,yi] = meshgrid(-10:10,-10:10);
zi = xi.^2+yi.^2;
zi = 1-(zi/max(zi(:)));
% create a random smoothed map
map = conv2(randn(100),zi,'same');
% threshold map at an arbitrary value
mapt = map;
mapt(abs(map)<range(map(:))/4) = 0;
% get labeled map via bwlabeln (in image processing toolbox)
[mapl,nblobs] = bwlabeln(mapt);
% mapl is a map of size <map> that contains numbers at each cluster.
% To extract information from clusters:
clustcount = zeros(1,nblobs);
clustsum = zeros(1,nblobs);
for i=1:nblobs
clustcount(i) = sum(mapl(:)==i);
clustsum(i) = sum(map(mapl(:)==i));
end
% bwconncomp works slightly differently, but will give similar information
blobinfo = bwconncomp(mapt);
% blobinfo is a structure that contains coordinates for each cluster rather than a map
% To extract information from clusters:
clustcount = zeros(1,nblobs);
clustsum = zeros(1,nblobs);
for i=1:nblobs
clustcount(i) = numel(blobinfo.PixelIdxList{i});
clustsum(i) = sum(map(blobinfo.PixelIdxList{i}));
end
% cluster count can be done faster using cellfun:
clustercount = cellfun(@numel,blobinfo.PixelIdxList);
figure
subplot(131)
imagesc(map), axis square
title('original')
subplot(132)
imagesc(mapt), axis square
title('thresholded')
subplot(133)
imagesc(mapl), axis square
title([ 'labeled (' num2str(nblobs) ' clusters in total)' ])
%% Figure 33.10
% This script calls the function fdr.m, which is included in the online
% code and was downloaded (and slightly modified) in summer 2012 from http://www-personal.umich.edu/~nichols/FDR/FDR.m
nsigs = round(linspace(1,500,80));
nnons = round(linspace(1,500,100));
fdrpvals = zeros(20,length(nsigs),length(nnons));
for iteri=1:20
for i=1:length(nsigs)
for j=1:length(nnons)
pvals = [ rand(1,nsigs(i))*.05 rand(1,nnons(j))*.5+.05 ];
temp = fdr(pvals,.05);
if isempty(temp)
fdrpvals(iteri,i,j) = NaN;
else
fdrpvals(iteri,i,j) = temp;
end
end
end
end
fdrpvals = squeeze(nanmean(fdrpvals));
figure
imagesc(fdrpvals)
set(gca,'clim',[0 .05])
xlabel('number of non-significant p-values')
ylabel('number of significant p-values')
figure
subplot(211)
plot(nanmean(fdrpvals,1))
xlabel('number of non-significant p-values')
ylabel('critical p-value')
set(gca,'ylim',[0 .05])
subplot(212)
plot(nanmean(fdrpvals,2))
xlabel('number of significant p-values')
ylabel('critical p-value')
set(gca,'ylim',[0 .05])
%% end.