-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdecisionTree.py
180 lines (160 loc) · 7.14 KB
/
decisionTree.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
# 该决策树使用ID3、C4.5实现,且C4.5未处理连续型的特征
import numpy as np
import os
# 获取训练集
def getTrainDataSet():
# dataSet = [[1, 1, 'yes'], [1, 1, 'yes'],
# [1, 0, 'no'], [0, 1, 'no'], [0, 1, 'no']]
# # 每个特征的使用的特征名
# labels = ['no surfacing', 'flippers']
dataSet = [['晴', '热', '高', '否', 'No'], ['晴', '热', '高', '是', 'No'], ['阴', '热', '高', '否', 'Yes'],
['雨', '适中', '高', '否', 'Yes'],
['雨', '凉爽', '正常', '否', 'Yes'], ['雨', '凉爽', '正常', '是', 'No'], ['阴', '凉爽', '正常', '是', 'Yes'],
['晴', '适中', '高', '否', 'No'],
['晴', '凉爽', '正常', '否', 'Yes'], ['雨', '适中', '正常', '否', 'Yes'], ['晴', '适中', '正常', '是', 'Yes'],
['阴', '适中', '高', '是', 'Yes'],
['阴', '热', '正常', '否', 'Yes'], ['雨', '适中', '高', '是', 'No']]
labels = ['天气', '温度', '湿度', '多风']
return dataSet, labels
# 计算给定数据集的香农熵
def calShannonEnt(dataset):
# 统计数据集的个数
counts = len(dataset)
# 用来记录每一类的个数
labelCounts = {}
# 1.将数据集中标签按类别分开并统计其个数
for ele in dataset:
if ele[-1] not in labelCounts.keys():
labelCounts[ele[-1]] = 0
labelCounts[ele[-1]] += 1
# 2.计算香农熵
shannonEnt = 0.0
for ele in labelCounts:
p = labelCounts[ele] / counts
shannonEnt -= p * np.log10(p)
return shannonEnt
# 划分指定列【即某一特征列】为特定值【在特征列上会有不同的取值】的数据集
def splitDataSet(dataset, index, value):
'''
:param dataset: 初始数据集
:param index: 指定列或指定的特征列
:param value: 该特征列上指定的值
:return: 指定列上为特定值的数据集
'''
specificDataSet = []
for ele in dataset:
if ele[index] == value:
specificDataSet.append(ele)
# 不包含指定列的数据集
for i in range(len(specificDataSet)):
specificDataSet[i] = specificDataSet[i][:index] + specificDataSet[i][index+1:]
return specificDataSet
# 获取某一特征列的数据集
def getFeatColumn(dataset, index):
featColumnData = []
for ele in dataset:
featColumnData.append([ele[index]])
return featColumnData
# 选择最好的特征作为节点,根据信息增益(ID3算法)进行选择
def chooseBestFeature(dataset):
# 数据集的熵
baseEntro = calShannonEnt(dataset)
# 最大的信息增益
maxGain = 0.0
# 初始特征列
bestFeatColumn = 0
# 1.确定一个样本有几个特征
numFeatures = len(dataset[0]) - 1
# 2.遍历所有特征列,并求出其在该特征条件下的熵,再求出其信息增益,找出最大信息增益作为需要的节点
for i in range(numFeatures):
# 对该特征列统计有多少取值
featValueList = [ele[i] for ele in dataset]
# 取出重复值
featValueList = list(set(featValueList))
conEntro = 0.0
for featValue in featValueList:
specfDataSet = splitDataSet(dataset, i, featValue)
prob = len(specfDataSet) / len(dataset)
conEntro += prob * calShannonEnt(specfDataSet) # 在某一特征下的条件熵
# 信息增益
infoGain = baseEntro - conEntro
# 当前特征列所对应的熵
featEntro = calShannonEnt(getFeatColumn(dataset, i))
# 信息增益率(C4.5中使用)
infoGainRate = infoGain / featEntro
# print(baseEntro, infoGain, featEntro, infoGainRate)
# 选择最大的信息增益特征列的小标
if infoGainRate > maxGain:
maxGain = infoGainRate
bestFeatColumn = i
return bestFeatColumn # 返回为【信息增益】最大的特征列的下标
# 选择出现类别较多的一类
def chooseMajorClass(classList):
classCount = {}
for ele in classList:
if ele not in classCount:
classCount[ele] = 0
classCount[ele] += 1
# 使用zip(),将字典键值对重组,并进行排序
classCount = sorted(list(zip(classCount.values(), classCount.keys())), reverse=True)
return classCount[0][-1]
# 创建决策树(暂时不进行剪枝)
def createDecisionTree(dataset, labels):
classList = [ele[-1] for ele in dataset]
# 第一个停止条件【若数据集中类标签只有一个】,即确定了叶节点
if classList.count(classList[0]) == len(classList):
return classList[0] # 返回yes or no
# 第二个停止条件【若使用完所有特征,仍不能确定所属类别】
if len(dataset[0]) == 1:
return chooseMajorClass(classList)
# 获取信息增益最大的特征列的下标
bestFeatColumn = chooseBestFeature(dataset)
bestFeatLabel = labels[bestFeatColumn]
# 使用字典来表示树,其中key表示节点,value表示边
decisionTree = {bestFeatLabel: {}}
# print(labels[bestFeatColumn])
# 复制原有的label进行删除,避免后续递归使用出现错误
newLabels = labels[:]
del newLabels[bestFeatColumn]
# 统计该列的类数
featValue = [ele[bestFeatColumn] for ele in dataset]
featValue = list(set(featValue))
# 根据特征列和特征值划分数据集
for value in featValue:
currDataSet = splitDataSet(dataset, bestFeatColumn, value)
decisionTree[bestFeatLabel][value] = createDecisionTree(currDataSet, newLabels)
return decisionTree
# 保存训练好的决策树模型
def saveDecisionTree(inputTree):
basePath = os.path.dirname(__file__)
inputTree = str(inputTree)
with open(basePath + '/tree.txt', 'w') as file:
file.write(inputTree)
print('=' * 10 + "决策树模型保存成功" + '=' * 10)
# 测试决策树模型
def testDecisionTree(labels, testData):
base_path = os.path.dirname(__file__)
classLabels = ['yes', 'no']
with open(base_path+'/tree.txt') as file:
treeModel = eval(file.read()) # 使用eval()将str-->dict,json.loads()也可将str-->dict
nodeValue = list(treeModel.keys())[0]
subTree = treeModel[nodeValue]
# 决策树的高度最多为特征数+1
for depth in range(len(labels)+1):
currTree = subTree[testData[labels.index(nodeValue)]]
if currTree not in classLabels:
nodeValue = list(currTree.keys())[0]
subTree = currTree[nodeValue]
else:
return currTree
if __name__ == '__main__':
dataset, labels = getTrainDataSet()
# print(calShannonEnt(dataset))
# splitDataSet(dataset, 1, 0)
# print(chooseBestFeature(dataset))
# print(chooseBestFeature(dataset))
# tree = createDecisionTree(dataset, labels)
print(createDecisionTree(dataset, labels))
# print(tree)
# saveDecisionTree(tree)
# print(testDecisionTree(labels, [1, 1]))