-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsample_and_evaluate_condition.py
317 lines (279 loc) · 12.3 KB
/
sample_and_evaluate_condition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
"""
Samples a large number of images from a pre-trained DiT model using DDP.
Subsequently saves a .npz file that can be used to compute FID and other
evaluation metrics via the ADM repo: https://github.com/openai/guided-diffusion/tree/main/evaluations
For a simple single-GPU/CPU sampling script, see sample.py.
"""
import torch
from torch import nn
import torch.distributed as dist
from models_lora import DiT_XL_2, DiT_models
from download import find_model
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL
from tqdm import tqdm
import os
from PIL import Image
import numpy as np
import math
import argparse
from evaluator import *
import os
# os.environ['MASTER_ADDR'] = 'localhost'
# os.environ['MASTER_PORT'] = '8888'
# os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
time_condition_aware = True
layer_aware = "_yes"
# dist.init_process_group(backend='nccl', init_method='env://', rank = torch.cuda.device_count(), world_size = 1)
################# LoRA Model #################
class LoRALayer(nn.Module):
def __init__(self, original_layer, r=128, alpha=1.0):
super(LoRALayer, self).__init__()
self.original_layer = original_layer
self.r = r # Low rank
self.alpha = alpha # Scaling factor
# Low-rank matrices
self.A = nn.Linear(original_layer.in_features, r, bias=False)
self.B = nn.Linear(r, original_layer.out_features, bias=False)
# Initialize weights of A and B as in the original implementation
nn.init.normal_(self.A.weight, mean=0.0, std=0.01)
nn.init.normal_(self.B.weight, mean=0.0, std=0.01)
# MLP to compute scale from the condition `c`
self.scale_mlp = nn.Sequential(
nn.Linear(1152, 12),
nn.ReLU(),
nn.Linear(12, 1), # Outputs a scalar
nn.Sigmoid() # Keeps the scale in the range [0, 1]
)
def forward(self, x, c=None):
lora_adjustment = self.B(self.A(x)) # (batch_size, in_features) -> (batch_size, out_features)
# Compute the scale based on `c`
if c is not None:
scale = self.scale_mlp(c).squeeze(-1) # Compute scalar for each batch element
scale = scale.unsqueeze(1).unsqueeze(2) # Match batch dimensions for broadcasting
else:
scale = self.alpha / self.r # Default scale if no `c` is provided
return self.original_layer(x) + scale * lora_adjustment
def add_lora_to_model(model, r=128, alpha=1.0):
layers_to_modify = [] # Collect layers to modify first
# Collect all linear layers in a list
for name, module in model.named_modules():
if isinstance(module, nn.Linear) and ("mlp" in name or "attn" in name) and ("blocks" in name):
layers_to_modify.append((name, module))
# Replace each collected layer with a LoRA layer
for name, module in layers_to_modify:
# Split the name by '.' to traverse submodules and set the new layer correctly
submodule = model
*module_names, layer_name = name.split(".")
for module_name in module_names:
submodule = getattr(submodule, module_name)
if layer_aware == "_yes":
if "attn.proj" in name:
adjusted_r = int(r * 0.7)
elif "attn.qkv" in name:
adjusted_r = int(r * 0.9)
else:
adjusted_r = r
else:
adjusted_r = r
# Replace the layer with a LoRA layer
# print(submodule)
# print(layer_name)
# print(module_name)
setattr(submodule, layer_name, LoRALayer(module, r=adjusted_r, alpha=alpha))
model.time_condition_aware = time_condition_aware
# Assuming `model` is the DiT model with LoRA layers added
def freeze_model_weights(model):
for name, param in model.named_parameters():
if not ((".A" in name) or ('.B' in name) or ('.scale_mlp' in name)): # Replace with the identifier for LoRA parameters
param.requires_grad = False # Freeze base model weights
def create_npz_from_sample_folder(sample_dir, num=10_000):
"""
Builds a single .npz file from a folder of .png samples.
"""
samples = []
for i in tqdm(range(num), desc="Building .npz file from samples"):
sample_pil = Image.open(f"{sample_dir}/{i:06d}.png")
sample_np = np.asarray(sample_pil).astype(np.uint8)
samples.append(sample_np)
samples = np.stack(samples)
assert samples.shape == (num, samples.shape[1], samples.shape[2], 3)
npz_path = f"{sample_dir}.npz"
np.savez(npz_path, arr_0=samples)
print(f"Saved .npz file to {npz_path} [shape={samples.shape}].")
return npz_path
def main(args):
"""
Run sampling.
"""
torch.backends.cuda.matmul.allow_tf32 = args.tf32 # True: fast but may lead to some small numerical differences
assert torch.cuda.is_available(
), "Sampling with DDP requires at least one GPU. sample.py supports CPU-only usage"
torch.set_grad_enabled(False)
print("Set up ddp")
# Setup DDP:
dist.init_process_group("nccl")
rank = dist.get_rank()
device = rank % torch.cuda.device_count()
seed = args.global_seed * dist.get_world_size() + rank
torch.manual_seed(seed)
torch.cuda.set_device(device)
print(
f"Starting rank={rank}, seed={seed}, world_size={dist.get_world_size()}."
)
# Load model:
latent_size = args.image_size // 8
model = DiT_models[args.model](input_size=latent_size,
num_classes=args.num_classes).to(device)
# Auto-download a pre-trained model or load a custom DiT checkpoint from train.py:
ckpt_path = args.ckpt
# state_dict = find_model(ckpt_path)
# Add LoRA layers (as shown in previous responses) and freeze base model weights
add_lora_to_model(model, r=args.rk) # Add LoRA layers to the model
# freeze_model_weights(model) # Freeze original model weights
print("=" * 100)
print(ckpt_path)
print("=" * 100)
if os.path.isfile(ckpt_path):
print(f"Load the checkpoint: {ckpt_path}")
checkpoint = torch.load(ckpt_path, weights_only=True)
model.load_state_dict(checkpoint['model_state_dict'])
model.eval()
else:
print("CANNOT FIND THE PATH!")
raise Exception
model.to(device)
# model.time_condition_aware = True
diffusion = create_diffusion(str(args.num_sampling_steps))
vae = AutoencoderKL.from_pretrained(
f"stabilityai/sd-vae-ft-{args.vae}").to(device)
assert args.cfg_scale >= 1.0, "In almost all cases, cfg_scale be >= 1.0"
using_cfg = args.cfg_scale > 1.0
# Create folder to save samples:
model_string_name = args.model.replace("/", "-")
ckpt_string_name = os.path.basename(args.ckpt).replace(
".pt", "") if args.ckpt else "pretrained"
folder_name = f"{model_string_name}-{ckpt_string_name}-size-{args.image_size}-vae-{args.vae}-" \
f"cfg-{args.cfg_scale}-seed-{args.global_seed}"
sample_folder_dir = f"/n/holylabs/LABS/wattenberg_lab/Users/yidachen/dit_npz/{args.sample_dir}/{folder_name}"
if rank == 0:
os.makedirs(sample_folder_dir, exist_ok=True)
print(f"Saving .png samples at {sample_folder_dir}")
dist.barrier()
# Figure out how many samples we need to generate on each GPU and how many iterations we need to run:
n = args.per_proc_batch_size
global_batch_size = n * dist.get_world_size()
# To make things evenly-divisible, we'll sample a bit more than we need and then discard the extra samples:
total_samples = int(
math.ceil(args.num_fid_samples / global_batch_size) *
global_batch_size)
if rank == 0:
print(f"Total number of images that will be sampled: {total_samples}")
assert total_samples % dist.get_world_size(
) == 0, "total_samples must be divisible by world_size"
samples_needed_this_gpu = int(total_samples // dist.get_world_size())
assert samples_needed_this_gpu % n == 0, "samples_needed_this_gpu must be divisible by the per-GPU batch size"
iterations = int(samples_needed_this_gpu // n)
pbar = range(iterations)
pbar = tqdm(pbar) if rank == 0 else pbar
total = 0
for _ in pbar:
# Sample inputs:
z = torch.randn(n,
model.in_channels,
latent_size,
latent_size,
device=device)
y = torch.randint(0, args.num_classes, (n, ), device=device)
# Setup classifier-free guidance:
if using_cfg:
z = torch.cat([z, z], 0)
y_null = torch.tensor([1000] * n, device=device)
y = torch.cat([y, y_null], 0)
model_kwargs = dict(y=y, cfg_scale=args.cfg_scale)
sample_fn = model.forward_with_cfg
else:
model_kwargs = dict(y=y)
sample_fn = model.forward
# Sample images:
samples = diffusion.p_sample_loop(sample_fn,
z.shape,
z,
clip_denoised=False,
model_kwargs=model_kwargs,
progress=False,
device=device)
if using_cfg:
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
samples = vae.decode(samples / 0.18215).sample
samples = torch.clamp(127.5 * samples + 128.0, 0,
255).permute(0, 2, 3,
1).to("cpu",
dtype=torch.uint8).numpy()
# Save samples to disk as individual .png files
for i, sample in enumerate(samples):
index = i * dist.get_world_size() + rank + total
Image.fromarray(sample).save(
f"{sample_folder_dir}/{index:06d}.png")
total += global_batch_size
torch.cuda.empty_cache()
# Make sure all processes have finished saving their samples before attempting to convert to .npz
dist.barrier()
if rank == 0:
create_npz_from_sample_folder(sample_folder_dir, args.num_fid_samples)
print("Done.")
dist.barrier()
dist.destroy_process_group()
# Download at https://github.com/openai/guided-diffusion/tree/main/evaluations
ref_folder_dir = f"VIRTUAL_imagenet{args.image_size}"
# create_npz_from_sample_folder(ref_folder_dir, args.num_fid_samples)
evaluate(f"{ref_folder_dir}.npz", f"{sample_folder_dir}.npz")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model",
type=str,
choices=list(DiT_models.keys()),
default="DiT-XL/2")
parser.add_argument("--vae",
type=str,
choices=["ema", "mse"],
default="ema")
parser.add_argument("--sample-dir", type=str, default="samples")
parser.add_argument("--per-proc-batch-size", type=int, default=64)
parser.add_argument("--num-fid-samples", type=int, default=10_000)
parser.add_argument("--image-size",
type=int,
choices=[256, 512],
required=True)
parser.add_argument("--num-classes", type=int, default=1000)
parser.add_argument("--cfg-scale", type=float, default=1.5)
parser.add_argument("--num-sampling-steps", type=int, required=True)
parser.add_argument("--global-seed", type=int, default=0)
parser.add_argument(
"--tf32",
action=argparse.BooleanOptionalAction,
default=True,
help=
"By default, use TF32 matmuls. This massively accelerates sampling on Ampere GPUs."
)
parser.add_argument(
"--ckpt",
type=str,
required=True,
help=
"Optional path to a DiT checkpoint (default: auto-download a pre-trained DiT-XL/2 model)."
)
parser.add_argument(
"--rk",
type=int,
required=True,
help=
"rank of the model."
)
args = parser.parse_args()
print("Number of GPUs", torch.cuda.device_count())
main(args)