-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_lora_formal_w4a8.py
160 lines (136 loc) · 5.94 KB
/
train_lora_formal_w4a8.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
from models import DiT_models
from diffusion import create_diffusion
from diffusers.models import AutoencoderKL
from tqdm import tqdm
from torchvision.utils import save_image
from quant.fake_quant import quantize_dit
from torch.utils.data import DataLoader, Subset
from torchvision.datasets import ImageFolder
from torchvision import transforms
from tqdm.auto import tqdm
from quant.lora_utils import add_lora_to_model, freeze_model_weights
from torch import optim
from train import center_crop_arr
import os
if __name__ == '__main__':
image_size = 256
device = 'cuda'
vae_model = "stabilityai/sd-vae-ft-ema" #@param ["stabilityai/sd-vae-ft-mse", "stabilityai/sd-vae-ft-ema"]
checkpoint_dir = '/n/netscratch/nali_lab_seas/Everyone/mingze/datasets/lora_training_w4a8/checkpoints'
sample_dir = '/n/netscratch/nali_lab_seas/Everyone/mingze/datasets/lora_training_w4a8/samples'
os.makedirs(sample_dir, exist_ok=True)
os.makedirs(checkpoint_dir, exist_ok=True)
# Load model:
latent_size = int(image_size) // 8
selected_class_ids = [234, 346, 938, 345]
seed = 1 #@param {type:"number"}
torch.manual_seed(seed)
num_sampling_steps = 100 #@param {type:"slider", min:0, max:1000, step:1}
cfg_scale = 2 #@param {type:"slider", min:1, max:10, step:0.1}
class_labels = selected_class_ids #@param {type:"raw"}
samples_per_row = 4 #@param {type:"number"}
transform = transforms.Compose([
transforms.Lambda(
lambda pil_image: center_crop_arr(pil_image, image_size)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5],
std=[0.5, 0.5, 0.5],
inplace=True)
])
full_dataset = ImageFolder(
"/n/home11/mingzeyuan/.cache/kagglehub/datasets/ifigotin/imagenetmini-1000/versions/1/imagenet-mini/train",
transform=transform)
# selected_indices = []
# for i, (_, label) in tqdm(enumerate(full_dataset)):
# if label in selected_class_ids:
# selected_indices.append(i)
# if label > max(selected_class_ids):
# break
def init_models():
model = DiT_models['DiT-XL/2'](input_size=latent_size).to(device)
# state_dict = find_model(f"DiT-XL-2-{image_size}x{image_size}.pt")
state_dict = torch.load(
'/n/netscratch/nali_lab_seas/Everyone/mingze/models/pretrained_models/DiT-XL-2-256x256.pt',
weights_only=True)
model.load_state_dict(state_dict)
model.eval() # important!
vae = AutoencoderKL.from_pretrained(vae_model).to(device)
return model, vae
epochs = 200
learning_rate = 1e-4
batch_size = 64
model, vae = init_models()
model = quantize_dit(model, mode='W4A8')
add_lora_to_model(model) # Add LoRA layers to the model
freeze_model_weights(model) # Freeze original model weights
model.to(device)
# filtered_dataset = Subset(full_dataset, selected_indices)
dataloader = DataLoader(full_dataset, batch_size=batch_size, shuffle=False)
for name, param in model.named_parameters():
if param.requires_grad:
print(name)
diffusion = create_diffusion(str(num_sampling_steps))
# Optimizer
optimizer = optim.AdamW(model.parameters(),
lr=learning_rate,
weight_decay=0.1)
for epoch in tqdm(range(epochs)):
running_loss = 0.0
for x, y in tqdm(dataloader):
x, y = x.to(device), y.to(device)
# Encode images to latent space and normalize latents
with torch.no_grad():
x = vae.encode(x).latent_dist.sample().mul_(0.18215)
# Explicitly set requires_grad for the input latents
# Sample a random timestep for each batch
t = torch.randint(0,
diffusion.num_timesteps, (x.shape[0], ),
device=device)
model_kwargs = {"y": y}
# Compute training losses from diffusion
loss_dict = diffusion.training_losses(model, x, t, model_kwargs)
loss = loss_dict["loss"].mean()
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Log loss
running_loss += loss.item()
# Print epoch loss
print(
f"Epoch [{epoch+1}/{epochs}], Loss: {running_loss/len(dataloader):.4f}"
)
checkpoint = {
"model": model.state_dict(),
"opt": optimizer.state_dict(),
}
checkpoint_path = f"{checkpoint_dir}/latest.pt"
torch.save(checkpoint, checkpoint_path)
# Create sampling noise:
n = len(class_labels)
z = torch.randn(n, 4, latent_size, latent_size, device=device)
y = torch.tensor(class_labels, device=device)
# Setup classifier-free guidance:
z = torch.cat([z, z], 0)
y_null = torch.tensor([1000] * n, device=device)
y = torch.cat([y, y_null], 0)
model_kwargs = dict(y=y, cfg_scale=cfg_scale)
# Sample images:
samples = diffusion.p_sample_loop(model.forward_with_cfg,
z.shape,
z,
clip_denoised=False,
model_kwargs=model_kwargs,
progress=True,
device=device)
samples, _ = samples.chunk(2, dim=0) # Remove null class samples
samples = vae.decode(samples / 0.18215).sample
# Save and display images:
save_image(samples,
os.path.join(sample_dir, f'sample_{epoch:03d}.png'),
nrow=int(samples_per_row),
normalize=True,
value_range=(-1, 1))
print("Training completed.")