forked from jaanli/variational-autoencoder
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathflow.py
152 lines (127 loc) · 5.79 KB
/
flow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
"""Credit: mostly based on Ilya's excellent implementation here: https://github.com/ikostrikov/pytorch-flows"""
import numpy as np
import torch
import torch.nn as nn
from torch.nn import functional as F
class InverseAutoregressiveFlow(nn.Module):
"""Inverse Autoregressive Flows with LSTM-type update. One block.
Eq 11-14 of https://arxiv.org/abs/1606.04934
"""
def __init__(self, num_input, num_hidden, num_context):
super().__init__()
self.made = MADE(num_input=num_input, num_output=num_input * 2,
num_hidden=num_hidden, num_context=num_context)
# init such that sigmoid(s) is close to 1 for stability
self.sigmoid_arg_bias = nn.Parameter(torch.ones(num_input) * 2)
self.sigmoid = nn.Sigmoid()
self.log_sigmoid = nn.LogSigmoid()
def forward(self, input, context=None):
m, s = torch.chunk(self.made(input, context), chunks=2, dim=-1)
s = s + self.sigmoid_arg_bias
sigmoid = self.sigmoid(s)
z = sigmoid * input + (1 - sigmoid) * m
return z, -self.log_sigmoid(s)
class FlowSequential(nn.Sequential):
"""Forward pass."""
def forward(self, input, context=None):
total_log_prob = torch.zeros_like(input, device=input.device)
for block in self._modules.values():
input, log_prob = block(input, context)
total_log_prob += log_prob
return input, total_log_prob
class MaskedLinear(nn.Module):
"""Linear layer with some input-output connections masked."""
def __init__(self, in_features, out_features, mask, context_features=None, bias=True):
super().__init__()
self.linear = nn.Linear(in_features, out_features, bias)
self.register_buffer("mask", mask)
if context_features is not None:
self.cond_linear = nn.Linear(context_features, out_features, bias=False)
def forward(self, input, context=None):
output = F.linear(input, self.mask * self.linear.weight, self.linear.bias)
if context is None:
return output
else:
return output + self.cond_linear(context)
class MADE(nn.Module):
"""Implements MADE: Masked Autoencoder for Distribution Estimation.
Follows https://arxiv.org/abs/1502.03509
This is used to build MAF: Masked Autoregressive Flow (https://arxiv.org/abs/1705.07057).
"""
def __init__(self, num_input, num_output, num_hidden, num_context):
super().__init__()
# m corresponds to m(k), the maximum degree of a node in the MADE paper
self._m = []
self._masks = []
self._build_masks(num_input, num_output, num_hidden, num_layers=3)
self._check_masks()
modules = []
self.input_context_net = MaskedLinear(num_input, num_hidden, self._masks[0], num_context)
modules.append(nn.ReLU())
modules.append(MaskedLinear(num_hidden, num_hidden, self._masks[1], context_features=None))
modules.append(nn.ReLU())
modules.append(MaskedLinear(num_hidden, num_output, self._masks[2], context_features=None))
self.net = nn.Sequential(*modules)
def _build_masks(self, num_input, num_output, num_hidden, num_layers):
"""Build the masks according to Eq 12 and 13 in the MADE paper."""
rng = np.random.RandomState(0)
# assign input units a number between 1 and D
self._m.append(np.arange(1, num_input + 1))
for i in range(1, num_layers + 1):
# randomly assign maximum number of input nodes to connect to
if i == num_layers:
# assign output layer units a number between 1 and D
m = np.arange(1, num_input + 1)
assert num_output % num_input == 0, "num_output must be multiple of num_input"
self._m.append(np.hstack([m for _ in range(num_output // num_input)]))
else:
# assign hidden layer units a number between 1 and D-1
self._m.append(rng.randint(1, num_input, size=num_hidden))
#self._m.append(np.arange(1, num_hidden + 1) % (num_input - 1) + 1)
if i == num_layers:
mask = self._m[i][None, :] > self._m[i - 1][:, None]
else:
# input to hidden & hidden to hidden
mask = self._m[i][None, :] >= self._m[i - 1][:, None]
# need to transpose for torch linear layer, shape (num_output, num_input)
self._masks.append(torch.from_numpy(mask.astype(np.float32).T))
def _check_masks(self):
"""Check that the connectivity matrix between layers is lower triangular."""
# (num_input, num_hidden)
prev = self._masks[0].t()
for i in range(1, len(self._masks)):
# num_hidden is second axis
prev = prev @ self._masks[i].t()
final = prev.numpy()
num_input = self._masks[0].shape[1]
num_output = self._masks[-1].shape[0]
assert final.shape == (num_input, num_output)
if num_output == num_input:
assert np.triu(final).all() == 0
else:
for submat in np.split(final,
indices_or_sections=num_output // num_input,
axis=1):
assert np.triu(submat).all() == 0
def forward(self, input, context=None):
# first hidden layer receives input and context
hidden = self.input_context_net(input, context)
# rest of the network is conditioned on both input and context
return self.net(hidden)
class Reverse(nn.Module):
""" An implementation of a reversing layer from
Density estimation using Real NVP
(https://arxiv.org/abs/1605.08803).
From https://github.com/ikostrikov/pytorch-flows/blob/master/main.py
"""
def __init__(self, num_input):
super(Reverse, self).__init__()
self.perm = np.array(np.arange(0, num_input)[::-1])
self.inv_perm = np.argsort(self.perm)
def forward(self, inputs, context=None, mode='forward'):
if mode == "forward":
return inputs[:, :, self.perm], torch.zeros_like(inputs, device=inputs.device)
elif mode == "inverse":
return inputs[:, :, self.inv_perm], torch.zeros_like(inputs, device=inputs.device)
else:
raise ValueError("Mode must be one of {forward, inverse}.")