-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathhouseholds.py
416 lines (349 loc) · 14 KB
/
households.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
#!/usr/bin/env python3
import argparse
import csv
import json
import os
import subprocess
import sys
from datetime import datetime
from pathlib import Path
from zipfile import ZipFile
import pandas as pd
from definitions import TIMESTAMP_FMT
from derive_subkey import derive_subkey
from households.matching import get_household_matches
HEADERS = ["HOUSEHOLD_POSITION", "PII_POSITIONS"]
HOUSEHOLD_PII_HEADERS = [
"family_name",
"phone_number",
"household_street_address",
"household_zip",
"record_ids",
]
HOUSEHOLD_POS_PID_HEADERS = ["household_position", "pid"]
def parse_arguments():
parser = argparse.ArgumentParser(
description="Tool for garbling household PII for PPRL purposes"
" in the CODI project"
)
parser.add_argument(
"sourcefile", default=None, nargs="?", help="Source pii-TIMESTAMP.csv file"
)
parser.add_argument("secretfile", help="Location of de-identification secret file")
parser.add_argument(
"-d",
"--householddef", # would have used -h but that's help
help="Location of household definitions file;"
" don't infer households from source PII",
)
parser.add_argument(
"--schemafile",
default="example-schema/household-schema/fn-phone-addr-zip.json",
help="Location of linkage schema."
" Default: example-schema/household-schema/fn-phone-addr-zip.json",
)
parser.add_argument(
"--mappingfile",
default="output/households/households.csv",
help="Specify a mapping file output for inferred households."
" Default is output/households/household.csv",
)
parser.add_argument(
"-o",
"--output",
dest="outputfile",
default="output/garbled_households.zip",
help="Specify an output file. Default is output/garbled_households.zip",
)
parser.add_argument(
"-t",
"--testrun",
action="store_true",
help="Optional generate files used for testing against an answer key",
)
parser.add_argument(
"--split_factor",
type=int,
default=4,
help="Number of segments to split data into when inferring households."
" Smaller numbers may result in out of memory errors. Larger numbers"
" may increase runtime. Default is 4",
)
parser.add_argument(
"--exact_addresses",
action="store_true",
help="Use exact matches on address as the definition of a household."
" By default the inference process will split up addresses into"
" street, number, suffix, etc, and considers phone # and family name"
" when making a determination which records belong to which household."
" Enabling this feature causes the process to use the entire address"
" as a single string for comparisons, and only the address. "
" If addresses have not been standardized/validated, this setting"
" will likely increase false negatives (records not being included "
" in households where they should be).",
)
parser.add_argument(
"--pairsfile",
help="Location of matching pairs file",
)
parser.add_argument(
"--debug",
action="store_true",
help="Enable debug-level logging",
)
args = parser.parse_args()
if args.sourcefile and not Path(args.sourcefile).exists():
parser.error("Unable to find source file: " + args.secretfile)
if not Path(args.schemafile).exists():
parser.error("Unable to find schema file: " + args.secretfile)
if not Path(args.secretfile).exists():
parser.error("Unable to find secret file: " + args.secretfile)
return args
def validate_secret_file(secret_file):
secret = None
with open(secret_file, "r") as secret_text:
secret = secret_text.read().strip()
try:
int(secret, 16)
except ValueError:
sys.exit("Secret must be in hexadecimal format")
if len(secret) < 32:
sys.exit("Secret smaller than minimum security level")
return secret
def parse_source_file(source_file, debug=False):
if debug:
print(f"[{datetime.now()}] Start loading PII file")
# dtype=str means force all columns to be strings even if they look numeric
# keep_default_na keeps empty cells as empty string, not a NaN
# usecols means only read the given colummn names,
# aka don't read the columns that are never used here: given_name, DOB, sex
df = pd.read_csv(
source_file,
dtype=str,
keep_default_na=False,
usecols=[
"record_id",
"family_name",
"phone_number",
"household_street_address",
"household_zip",
],
)
if debug:
print(f"[{datetime.now()}] Done loading PII file")
return df
# Simple breadth-first-search to turn a graph-like structure of pairs
# into a list representing the ids in the household
def bfs_traverse_matches(pos_to_pairs, position):
queue = [position]
visited = [position]
while queue:
curr = queue.pop(0)
pairs = pos_to_pairs[curr]
for p in pairs:
if p[0] not in visited:
visited.append(p[0])
queue.append(p[0])
if p[1] not in visited:
visited.append(p[1])
queue.append(p[1])
visited.sort()
return visited
def get_default_pii_csv(dirname="temp-data"):
filenames = list(filter(lambda x: "pii" in x and len(x) == 23, os.listdir(dirname)))
timestamps = [
datetime.strptime(filename[4:-4], TIMESTAMP_FMT) for filename in filenames
]
newest_name = filenames[timestamps.index(max(timestamps))]
source_file = Path("temp-data") / newest_name
return source_file
def write_pii_and_mapping_file(pos_pid_rows, hid_pat_id_rows, household_time, args):
if args.sourcefile:
source_file = Path(args.sourcefile)
else:
source_file = get_default_pii_csv()
print(f"PII Source: {str(source_file)}")
pii_lines = parse_source_file(source_file, args.debug)
# pos_to_pairs is a dict of:
# (patient position) --> [matching pairs that include that patient]
# so it can be traversed sort of like a graph from any given patient
# note the key is patient position within the pii_lines dataframe
pos_to_pairs = get_household_matches(
pii_lines, args.split_factor, args.debug, args.exact_addresses, args.pairsfile
)
mapping_file = Path(args.mappingfile)
n_households = 0
with open(mapping_file, "w", newline="", encoding="utf-8") as csvfile:
mapping_writer = csv.writer(csvfile)
mapping_writer.writerow(HEADERS)
if args.debug:
print(f"[{datetime.now()}] Assembling output file")
timestamp = household_time.strftime(TIMESTAMP_FMT)
hh_pii_path = Path("temp-data") / f"households_pii-{timestamp}.csv"
with open(
hh_pii_path,
"w",
newline="",
encoding="utf-8",
) as hh_pii_csv:
print(f"Writing households PII to {hh_pii_path}")
pii_writer = csv.writer(hh_pii_csv)
pii_writer.writerow(HOUSEHOLD_PII_HEADERS)
pii_lines["written_to_file"] = False
hclk_position = 0
lines_processed = 0
hh_sizes = []
five_percent = int(len(pii_lines) / 20)
# Match households
for position, _line in pii_lines.sample(frac=1).iterrows():
# sample(frac=1) shuffles the entire dataframe
# note that "position" is the index and still relative to the original
line = pii_lines.loc[position]
lines_processed += 1
if args.debug and (lines_processed % five_percent) == 0:
print(
f"[{datetime.now()}] Processing pii lines"
f" - {lines_processed}/{len(pii_lines)}"
)
if line["written_to_file"]:
continue
if position in pos_to_pairs:
pat_positions = bfs_traverse_matches(pos_to_pairs, position)
# map those row numbers to PATIDs
pat_ids = list(
map(lambda p: pii_lines.at[p, "record_id"], pat_positions)
)
else:
pat_positions = [position]
pat_ids = [line[0]]
# mark all these rows as written to file
pii_lines.loc[pat_positions, ["written_to_file"]] = True
hh_sizes.append(len(pat_positions))
string_pat_positions = [str(p) for p in pat_positions]
pat_string = ",".join(string_pat_positions)
mapping_writer.writerow([hclk_position, pat_string])
n_households += 1
if args.testrun:
pos_pid_rows.append([hclk_position, line[0]])
for patid in pat_ids:
hid_pat_id_rows.append([hclk_position, patid])
# note pat_ids_str will be quoted by the csv writer if needed
pat_ids_str = ",".join(pat_ids)
output_row = [
line["family_name"],
line["phone_number"],
line["household_street_address"],
line["household_zip"],
pat_ids_str,
]
hclk_position += 1
pii_writer.writerow(output_row)
hh_sizes_series = pd.Series(hh_sizes, dtype=int)
print("Household size stats:")
print(hh_sizes_series.describe())
return n_households
def write_scoring_file(hid_pat_id_rows):
# Format is used for scoring
with open(
Path("temp-data") / "hh_pos_patids.csv", "w", newline="", encoding="utf-8"
) as hpos_pat_csv:
writer = csv.writer(hpos_pat_csv)
writer.writerow(HOUSEHOLD_POS_PID_HEADERS)
for output_row in hid_pat_id_rows:
writer.writerow(output_row)
def write_hid_hh_pos_map(pos_pid_rows):
# Format is used for generating a hid to hh_pos for full answer key
with open(
Path("temp-data") / "household_pos_pid.csv", "w", newline="", encoding="utf-8"
) as house_pos_csv:
writer = csv.writer(house_pos_csv)
writer.writerow(HOUSEHOLD_POS_PID_HEADERS)
for output_row in pos_pid_rows:
writer.writerow(output_row)
def hash_households(args, household_time):
timestamp = household_time.strftime(TIMESTAMP_FMT)
schema_file = Path(args.schemafile)
secret_file = Path(args.secretfile)
secret = validate_secret_file(secret_file)
households_secret = derive_subkey(secret, "households")
with open(schema_file, "r") as schema:
file_contents = schema.read()
if "doubleHash" in file_contents:
sys.exit(
"The following schema uses doubleHash, which is insecure: "
+ str(schema_file)
)
output_file = Path("output") / "households" / "fn-phone-addr-zip.json"
household_pii_file = (
args.householddef or Path("temp-data") / f"households_pii-{timestamp}.csv"
)
subprocess.run(
[
"anonlink",
"hash",
household_pii_file,
households_secret,
str(schema_file),
str(output_file),
]
)
def infer_households(args, household_time):
pos_pid_rows = []
hid_pat_id_rows = []
os.makedirs(Path("output") / "households", exist_ok=True)
os.makedirs("temp-data", exist_ok=True)
n_households = write_pii_and_mapping_file(
pos_pid_rows, hid_pat_id_rows, household_time, args
)
if args.testrun:
write_scoring_file(hid_pat_id_rows)
write_hid_hh_pos_map(pos_pid_rows)
return n_households
def create_output_zip(args, n_households, household_time):
timestamp = household_time.strftime(TIMESTAMP_FMT)
if args.sourcefile:
source_file = Path(args.sourcefile)
else:
source_file = get_default_pii_csv()
source_file_name = os.path.basename(source_file)
source_dir_name = os.path.dirname(source_file)
source_timestamp = os.path.splitext(source_file_name.replace("pii-", ""))[0]
metadata_file_name = source_file_name.replace("pii", "metadata").replace(
".csv", ".json"
)
metadata_file = Path(source_dir_name) / metadata_file_name
with open(metadata_file, "r") as fp:
metadata = json.load(fp)
new_metadata_filename = f"households_metadata-{timestamp}.json"
meta_timestamp = metadata["creation_date"].replace("-", "").replace(":", "")[:-7]
assert (
source_timestamp == meta_timestamp
), "Metadata creation date does not match pii file timestamp"
metadata["number_of_households"] = n_households
metadata["household_garble_time"] = household_time.isoformat()
if not args.householddef:
metadata["households_inferred"] = True
else:
metadata["households_inferred"] = False
with open(Path("temp-data") / new_metadata_filename, "w+") as metadata_file:
json.dump(metadata, metadata_file, indent=2)
with open(Path("output") / new_metadata_filename, "w+") as metadata_file:
json.dump(metadata, metadata_file, indent=2)
with ZipFile(Path(args.outputfile), "w") as garbled_zip:
garbled_zip.write(Path("output") / "households" / "fn-phone-addr-zip.json")
garbled_zip.write(Path("output") / new_metadata_filename)
os.remove(Path("output") / new_metadata_filename)
print("Zip file created at: " + str(Path(args.outputfile)))
def main():
args = parse_arguments()
household_time = datetime.now()
if not args.householddef:
n_households = infer_households(args, household_time)
else:
with open(args.householddef) as household_file:
households = household_file.read()
n_households = len(households.split()) - 1
hash_households(args, household_time)
create_output_zip(args, n_households, household_time)
if __name__ == "__main__":
main()