-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
476 lines (392 loc) · 20 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import torch.nn as nn
from torch.distributions import Categorical
from transformers import TransfoXLModel, TransfoXLConfig, TransfoXLTokenizer
import torch
import numpy as np
import clip
import os
from clip.simple_tokenizer import SimpleTokenizer
class DiscreteActor(nn.Module):
def __init__(self, input_dim, hidden, out_dim, n_hidden=0):
super(DiscreteActor, self).__init__()
self.modlist = [nn.Linear(input_dim, hidden),
nn.LayerNorm(hidden, elementwise_affine=False),
nn.ReLU()]
if n_hidden > 0:
self.modlist.extend([nn.Linear(hidden, hidden),
nn.LayerNorm(hidden, elementwise_affine=False),
nn.ReLU()] * n_hidden)
self.modlist.extend([nn.Linear(hidden, out_dim),
nn.Softmax(dim=-1)])
self.actor = nn.Sequential(*self.modlist).apply(orthogonal_init)
def forward(self, states, deterministic=False):
probs = self.actor(states)
dist = Categorical(probs)
if deterministic:
action = torch.argmax(probs).squeeze()
else:
action = dist.sample().squeeze()
log_prob = dist.log_prob(action)
return action, log_prob
def evaluate(self, states, actions):
probs = self.actor(states)
dist = Categorical(probs)
log_prob = dist.log_prob(actions.squeeze())
entropy = dist.entropy()
return log_prob, entropy
class SmallImpalaCNN(nn.Module):
def __init__(self, observation_shape, channel_scale=1, hidden_dim=256):
super(SmallImpalaCNN, self).__init__()
self.obs_size = observation_shape
self.in_channels = 3
kernel1 = 8 if self.obs_size[1] > 9 else 4
kernel2 = 4 if self.obs_size[2] > 9 else 2
stride1 = 4 if self.obs_size[1] > 9 else 2
stride2 = 2 if self.obs_size[2] > 9 else 1
self.block1 = nn.Sequential(nn.Conv2d(in_channels=self.in_channels, out_channels=16*channel_scale, kernel_size=kernel1, stride=stride1),
nn.ReLU())
self.block2 = nn.Sequential(nn.Conv2d(in_channels=16*channel_scale, out_channels=32*channel_scale, kernel_size=kernel2, stride=stride2),
nn.ReLU())
in_features = self._get_feature_size(self.obs_size)
self.fc = nn.Linear(in_features=in_features, out_features=hidden_dim)
self.hidden_dim = hidden_dim
self.apply(xavier_uniform_init)
def forward(self, x):
if x.shape[1] != self.in_channels:
x = x.permute(0, 3, 1, 2)
x = self.block1(x)
x = self.block2(x)
x = x.reshape(x.size(0), -1)
x = self.fc(x)
x = nn.ReLU()(x)
return x
def _get_feature_size(self, shape):
if shape[0] != 3:
dummy_input = torch.zeros((shape[-1], *shape[:-1])).unsqueeze(0)
else:
dummy_input = torch.zeros((shape[0], *shape[1:])).unsqueeze(0)
x = self.block2(self.block1(dummy_input))
return np.prod(x.shape[1:])
class FrozenHopfield(nn.Module):
def __init__(self, hidden_dim, input_dim, embeddings, beta):
super(FrozenHopfield, self).__init__()
self.rand_obs_proj = torch.nn.Parameter(torch.normal(mean=0.0, std=1 / np.sqrt(hidden_dim), size=(hidden_dim, input_dim)), requires_grad=False)
self.word_embs = embeddings
self.beta = beta
def forward(self, observations):
observations = self._preprocess_obs(observations)
observations = observations @ self.rand_obs_proj.T
similarities = observations @ self.word_embs.T / (
observations.norm(dim=-1).unsqueeze(1) @ self.word_embs.norm(dim=-1).unsqueeze(0) + 1e-8)
softm = torch.softmax(self.beta * similarities, dim=-1)
state = softm @ self.word_embs
return state
def _preprocess_obs(self, obs):
obs = obs.mean(1)
obs = torch.stack([o.view(-1) for o in obs])
return obs
class HELM(nn.Module):
def __init__(self, action_space, input_dim, optimizer, learning_rate, epsilon=1e-8, mem_len=511, beta=1,
device='cuda'):
super(HELM, self).__init__()
config = TransfoXLConfig()
config.mem_len = mem_len
self.mem_len = config.mem_len
self.model = TransfoXLModel.from_pretrained('transfo-xl-wt103', config=config)
n_tokens = self.model.word_emb.n_token
word_embs = self.model.word_emb(torch.arange(n_tokens)).detach().to(device)
hidden_dim = self.model.d_embed
hopfield_input = np.prod(input_dim[1:])
self.frozen_hopfield = FrozenHopfield(hidden_dim, hopfield_input, word_embs, beta=beta)
for p in self.model.parameters():
p.requires_grad_(False)
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.query_encoder = SmallImpalaCNN(input_dim, channel_scale=4, hidden_dim=hidden_dim)
self.out_dim = hidden_dim*2
self.actor = DiscreteActor(self.out_dim, 128, action_space.n).apply(orthogonal_init)
self.critic = nn.Sequential(nn.Linear(self.out_dim, 512),
nn.LayerNorm(512, elementwise_affine=False),
nn.ReLU(),
nn.Linear(512, 1)).apply(orthogonal_init)
try:
self.optimizer = getattr(torch.optim, optimizer)(self.yield_trainable_params(), lr=learning_rate,
eps=epsilon)
except AttributeError:
raise NotImplementedError(f"{optimizer} does not exist")
self.memory = None
def yield_trainable_params(self):
for n, p in self.named_parameters():
if 'model.' in n:
continue
else:
yield p
def forward(self, observations, deterministic=False):
bs, *_ = observations.shape
obs_query = self.query_encoder(observations)
vocab_encoding = self.frozen_hopfield.forward(observations)
out = self.model(inputs_embeds=vocab_encoding.unsqueeze(1), output_hidden_states=True, mems=self.memory)
self.memory = out.mems
hidden = out.last_hidden_state[:, -1, :]
hiddens = out.last_hidden_state[:, -1, :].cpu().numpy()
hidden = torch.cat([hidden, obs_query], dim=-1)
action, log_prob = self.actor(hidden, deterministic=deterministic)
values = self.critic(hidden).squeeze()
return action.cpu().numpy(), values.cpu().numpy(), log_prob.cpu().numpy().squeeze(), hiddens
def evaluate_actions(self, hidden_states, actions, observations):
queries = self.query_encoder(observations)
hidden = torch.cat([hidden_states, queries], dim=-1)
log_prob, entropy = self.actor.evaluate(hidden, actions)
value = self.critic(hidden).squeeze()
return value, log_prob, entropy
class HELMv2(nn.Module):
def __init__(self, action_space, input_dim, optimizer, learning_rate, epsilon=1e-8, mem_len=511, device='cuda'):
super(HELMv2, self).__init__()
config = TransfoXLConfig()
config.mem_len = mem_len
self.mem_len = config.mem_len
self.model = TransfoXLModel.from_pretrained('transfo-xl-wt103', config=config)
n_tokens = self.model.word_emb.n_token
word_embs = self.model.word_emb(torch.arange(n_tokens)).detach().to(device)
self.we_std = word_embs.std(0)
self.we_mean = word_embs.mean(0)
self.vis_encoder = VisionBackbone("RN50")
hidden_dim = self.model.d_embed
for p in self.model.parameters():
p.requires_grad_(False)
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.query_encoder = SmallImpalaCNN(input_dim, channel_scale=4, hidden_dim=hidden_dim)
self.out_dim = hidden_dim*2
self.actor = DiscreteActor(self.out_dim, 128, action_space.n).apply(orthogonal_init)
self.critic = nn.Sequential(nn.Linear(self.out_dim, 512),
nn.LayerNorm(512, elementwise_affine=False),
nn.ReLU(),
nn.Linear(512, 1)).apply(orthogonal_init)
try:
self.optimizer = getattr(torch.optim, optimizer)(self.yield_trainable_params(), lr=learning_rate,
eps=epsilon)
except AttributeError:
raise NotImplementedError(f"{optimizer} does not exist")
self.memory = None
def yield_trainable_params(self):
for n, p in self.named_parameters():
if 'model.' in n or 'vis_encoder' in n:
continue
else:
yield p
def forward(self, observations, deterministic=False):
bs, *_ = observations.shape
obs_query = self.query_encoder(observations)
observations = self.vis_encoder(observations)
observations = (observations - observations.mean(0)) / (observations.std(0) + 1e-8)
observations = observations * self.we_std + self.we_mean
out = self.model(inputs_embeds=observations.unsqueeze(1), output_hidden_states=True, mems=self.memory)
self.memory = out.mems
hidden = out.last_hidden_state[:, -1, :]
hiddens = out.last_hidden_state[:, -1, :].cpu().numpy()
hidden = torch.cat([hidden, obs_query], dim=-1)
action, log_prob = self.actor(hidden, deterministic=deterministic)
values = self.critic(hidden).squeeze()
return action.cpu().numpy(), values.cpu().numpy(), log_prob.cpu().numpy().squeeze(), hiddens
def evaluate_actions(self, hidden_states, actions, observations):
queries = self.query_encoder(observations)
hidden = torch.cat([hidden_states, queries], dim=-1)
log_prob, entropy = self.actor.evaluate(hidden, actions)
value = self.critic(hidden).squeeze()
return value, log_prob, entropy
class SHELM(nn.Module):
def __init__(self, action_space, input_dim, optimizer, learning_rate, env_id, topk=1, epsilon=1e-8, mem_len=511,
clip_encoder='ViT-B/16', device='cuda'):
super(SHELM, self).__init__()
config = TransfoXLConfig()
config.mem_len = mem_len
self.mem_len = config.mem_len
self.model = TransfoXLModel.from_pretrained('transfo-xl-wt103', config=config)
self.clip_tokenizer = SimpleTokenizer()
self.tokenizer = TransfoXLTokenizer.from_pretrained('transfo-xl-wt103')
if 'psychlab' in env_id:
self.clip_embs = np.load(os.path.join('data', f'{clip_encoder.replace("/", "")}_dmlab_prompt_embs.npz'))
else:
self.clip_embs = np.load(os.path.join('data', f'{clip_encoder.replace("/", "")}_embs.npz'))
self.lexical_overlap = np.load(os.path.join('data', 'clip_transfo-xl-wt103_intersect.npz'))
self.clip_embs = torch.FloatTensor(self.clip_embs[self.lexical_overlap]).cuda()
n_tokens = self.model.word_emb.n_token
self.word_embs = self.model.word_emb(torch.arange(n_tokens)).detach().to(device)
self.topk = topk
self.vis_encoder = VisionBackbone(clip_encoder)
hidden_dim = self.model.d_embed
for p in self.model.parameters():
p.requires_grad_(False)
self.input_dim = input_dim
self.hidden_dim = hidden_dim
self.query_encoder = SmallImpalaCNN(input_dim, channel_scale=4, hidden_dim=hidden_dim)
self.out_dim = hidden_dim*2
self.actor = DiscreteActor(self.out_dim, 128, action_space.n).apply(orthogonal_init)
self.critic = nn.Sequential(nn.Linear(self.out_dim, 512),
nn.LayerNorm(512, elementwise_affine=False),
nn.ReLU(),
nn.Linear(512, 1)).apply(orthogonal_init)
try:
self.optimizer = getattr(torch.optim, optimizer)(self.yield_trainable_params(), lr=learning_rate,
eps=epsilon)
except AttributeError:
raise NotImplementedError(f"{optimizer} does not exist")
self.memory = None
def yield_trainable_params(self):
for n, p in self.named_parameters():
if 'model.' in n or 'vis_encoder' in n:
continue
else:
yield p
def _calc_cos_sim(self, src, target):
normed_src = src / src.norm(dim=-1, keepdim=True)
normed_tar = target / target.norm(dim=-1, keepdim=True)
return normed_src @ normed_tar.T
def get_top_k_toks(self, src, tar, k=1):
cos_sims = self._calc_cos_sim(src, tar)
ranked = np.argsort(cos_sims.detach().cpu().numpy(), axis=-1)[:, ::-1][:, :k]
ranked = self.lexical_overlap[ranked]
decoded = []
embs = []
for toks in ranked:
dec = [self.clip_tokenizer.decode([t]) for t in toks]
decoded.append(dec)
enc = self.tokenizer.encode(dec)
embs.append(self.word_embs[enc])
embs = torch.stack(embs)
return embs, decoded
def forward(self, observations, deterministic=False):
if observations.shape[1] != 3:
observations = observations.permute(0, 3, 1, 2)
else:
bs, *_ = observations.shape
obs_query = self.query_encoder(observations)
observations = self.vis_encoder(observations)
observations, _ = self.get_top_k_toks(observations, self.clip_embs, self.topk)
if len(observations.shape) == 2:
observations = observations.unsqueeze(1)
out = self.model(inputs_embeds=observations, output_hidden_states=True, mems=self.memory)
self.memory = out.mems
hidden = out.last_hidden_state[:, -1, :]
hiddens = out.last_hidden_state[:, -1, :].cpu().numpy()
hidden = torch.cat([hidden, obs_query], dim=-1)
action, log_prob = self.actor(hidden, deterministic=deterministic)
values = self.critic(hidden).squeeze()
return action.cpu().numpy(), values.cpu().numpy(), log_prob.cpu().numpy().squeeze(), hiddens
def evaluate_actions(self, hidden_states, actions, observations):
if observations.shape[1] != 3:
observations = observations.permute(0, 3, 1, 2)
else:
bs, *_ = observations.shape
queries = self.query_encoder(observations)
hidden = torch.cat([hidden_states, queries], dim=-1)
log_prob, entropy = self.actor.evaluate(hidden, actions)
value = self.critic(hidden).squeeze()
return value, log_prob, entropy
class VisionBackbone(nn.Module):
def __init__(self, encoder):
super(VisionBackbone, self).__init__()
print(f"Allocating CLIP...")
self.model, preprocess = clip.load(encoder)
self.transforms = preprocess
preprocess.transforms = [preprocess.transforms[0], preprocess.transforms[1], preprocess.transforms[-1]]
self.transforms = preprocess
self.n_channels = 3
self.model.eval()
self._deactivate_grad()
def forward(self, observations):
if observations.shape[1] != self.n_channels:
observations = observations.permute(0, 3, 1, 2)
observations = self._preprocess(observations)
out = self.model.encode_image(observations).float()
return out
def _deactivate_grad(self):
for p in self.model.parameters():
p.requires_grad_(False)
def _preprocess(self, observation):
return self.transforms(observation)
class MarkovianImpalaCNN(nn.Module):
def __init__(self, obs_dim, action_dim, optimizer, learning_rate):
super(MarkovianImpalaCNN, self).__init__()
self.encoder = SmallImpalaCNN(obs_dim, channel_scale=4, hidden_dim=1024)
hidden_dim = self.encoder.hidden_dim
self.actor = DiscreteActor(hidden_dim, hidden=128, out_dim=action_dim).apply(orthogonal_init)
critic_modules = []
critic_modules.extend([nn.Linear(hidden_dim, 512),
nn.LayerNorm(512, elementwise_affine=False),
nn.ReLU()])
critic_modules.append(nn.Linear(512, 1))
self.critic = nn.Sequential(*critic_modules).apply(orthogonal_init)
try:
self.optimizer = getattr(torch.optim, optimizer)(self.parameters(), lr=learning_rate)
except AttributeError:
raise NotImplementedError(f"{optimizer} does not exist")
def forward(self, states):
encoded = self.encoder(states)
action, log_prob = self.actor(encoded)
value = self.critic(encoded)
return action.cpu().detach().numpy(), value.cpu().detach().squeeze().numpy(), log_prob.cpu().detach().numpy()
def evaluate_actions(self, states, actions):
encoded = self.encoder(states)
log_probs, entropy = self.actor.evaluate(encoded, actions)
values = self.critic(encoded).squeeze()
return values, log_probs, entropy
class LSTMImpalaAgent(nn.Module):
def __init__(self, action_dim, input_dim, optimizer, learning_rate, channel_scale=1, hidden_dim=256):
super(LSTMImpalaAgent, self).__init__()
self.encoder = SmallImpalaCNN(input_dim, channel_scale=channel_scale, hidden_dim=hidden_dim)
self.hidden_dim = self.encoder.hidden_dim
self.lstm = nn.LSTM(input_size=self.hidden_dim, hidden_size=self.hidden_dim, batch_first=True)
self.actor = DiscreteActor(self.hidden_dim, 128, action_dim).apply(orthogonal_init)
self.critic = nn.Sequential(nn.Linear(self.hidden_dim, 512),
nn.LayerNorm(512, elementwise_affine=False),
nn.ReLU(),
nn.Linear(512, 1)).apply(orthogonal_init)
self.hidden = None
self.cell = None
try:
self.optimizer = getattr(torch.optim, optimizer)(self.parameters(), lr=learning_rate)
except AttributeError:
raise NotImplementedError(f"{optimizer} does not exist")
def reset_states(self):
self._init_hidden(1)
def _init_hidden(self, batch_size):
device = next(self.parameters()).device
self.hidden = torch.zeros(1, batch_size, self.hidden_dim).to(device)
self.cell = torch.zeros(1, batch_size, self.hidden_dim).to(device)
def forward(self, state):
bs, *_ = state.shape
encoded = self.encoder(state)
if self.hidden is None and self.cell is None:
self._init_hidden(bs)
last_hidden = np.array([self.hidden.cpu().numpy().squeeze(), self.cell.cpu().numpy().squeeze()])
hidden, (self.hidden, self.cell) = self.lstm(encoded.unsqueeze(1), (self.hidden, self.cell))
hidden = hidden[:, -1, :]
action, log_prob = self.actor(hidden)
values = self.critic(hidden).squeeze()
return action.cpu().numpy(), values.cpu().numpy(), log_prob.cpu().numpy().squeeze(), last_hidden
def evaluate_actions(self, states, actions, internals, detach_value_grad=False):
bs, seqlen, *_ = states.shape
states = states.reshape(bs*seqlen, *states.shape[2:])
encoded = self.encoder(states)
encoded = encoded.view(bs, seqlen, -1)
internals = (internals[:, 0, 0, :].unsqueeze(0).contiguous(), internals[:, 0, 1, :].unsqueeze(0).contiguous())
hidden, _ = self.lstm(encoded, internals)
log_prob, entropy = self.actor.evaluate(hidden, actions)
if detach_value_grad:
hidden = hidden.detach()
value = self.critic(hidden)
return value, log_prob, entropy
def orthogonal_init(m):
if isinstance(m, nn.Linear) or isinstance(m, nn.Conv2d):
gain = nn.init.calculate_gain('relu')
torch.nn.init.orthogonal_(m.weight.data, gain=gain)
if m.bias is not None:
torch.nn.init.zeros_(m.bias.data)
def xavier_uniform_init(module):
if isinstance(module, nn.Linear) or isinstance(module, nn.Conv2d):
gain = nn.init.calculate_gain('relu')
nn.init.xavier_uniform_(module.weight.data, gain)
nn.init.constant_(module.bias.data, 0.)
return module