diff --git a/404.html b/404.html index a579458..d8f38eb 100644 --- a/404.html +++ b/404.html @@ -8,9 +8,9 @@ Page not found (404) • mlr3fda - - - + + + diff --git a/LICENSE-text.html b/LICENSE-text.html index 2477aae..761a386 100644 --- a/LICENSE-text.html +++ b/LICENSE-text.html @@ -1,5 +1,5 @@ -License • mlr3fdaLicense • mlr3fda diff --git a/authors.html b/authors.html index 5a7d500..b3d2959 100644 --- a/authors.html +++ b/authors.html @@ -1,5 +1,5 @@ -Authors and Citation • mlr3fdaAuthors and Citation • mlr3fda diff --git a/deps/JetBrains_Mono-0.4.9/font.css b/deps/JetBrains_Mono-0.4.9/font.css new file mode 100644 index 0000000..3d6d301 --- /dev/null +++ b/deps/JetBrains_Mono-0.4.9/font.css @@ -0,0 +1,54 @@ +/* cyrillic-ext */ +@font-face { + font-family: 'JetBrains Mono'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTN1OVgaY.woff2) format('woff2'); + unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F; +} +/* cyrillic */ +@font-face { + font-family: 'JetBrains Mono'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTPlOVgaY.woff2) format('woff2'); + unicode-range: U+0301, U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116; +} +/* greek */ +@font-face { + font-family: 'JetBrains Mono'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOVOVgaY.woff2) format('woff2'); + unicode-range: U+0370-0377, U+037A-037F, U+0384-038A, U+038C, U+038E-03A1, U+03A3-03FF; +} +/* vietnamese */ +@font-face { + font-family: 'JetBrains Mono'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNVOVgaY.woff2) format('woff2'); + unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+0300-0301, U+0303-0304, U+0308-0309, U+0323, U+0329, U+1EA0-1EF9, U+20AB; +} +/* latin-ext */ +@font-face { + font-family: 'JetBrains Mono'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNFOVgaY.woff2) format('woff2'); + unicode-range: U+0100-02AF, U+0304, U+0308, U+0329, U+1E00-1E9F, U+1EF2-1EFF, U+2020, U+20A0-20AB, U+20AD-20C0, U+2113, U+2C60-2C7F, U+A720-A7FF; +} +/* latin */ +@font-face { + font-family: 'JetBrains Mono'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOlOV.woff2) format('woff2'); + unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+0304, U+0308, U+0329, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; +} diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTN1OVgaY.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTN1OVgaY.woff2 new file mode 100644 index 0000000..aef4898 Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTN1OVgaY.woff2 differ diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNFOVgaY.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNFOVgaY.woff2 new file mode 100644 index 0000000..095292d Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNFOVgaY.woff2 differ diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNVOVgaY.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNVOVgaY.woff2 new file mode 100644 index 0000000..1193197 Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTNVOVgaY.woff2 differ diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOVOVgaY.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOVOVgaY.woff2 new file mode 100644 index 0000000..ada16a6 Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOVOVgaY.woff2 differ diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOlOV.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOlOV.woff2 new file mode 100644 index 0000000..c3f046f Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTOlOV.woff2 differ diff --git a/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTPlOVgaY.woff2 b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTPlOVgaY.woff2 new file mode 100644 index 0000000..6d1cd6a Binary files /dev/null and b/deps/JetBrains_Mono-0.4.9/tDbY2o-flEEny0FZhsfKu5WU4zr3E_BX0PnT8RD8yKxTPlOVgaY.woff2 differ diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4WxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4WxKOzY.woff2 new file mode 100644 index 0000000..fc71d94 Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4WxKOzY.woff2 differ diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4mxK.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4mxK.woff2 new file mode 100644 index 0000000..020729e Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu4mxK.woff2 differ diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu5mxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu5mxKOzY.woff2 new file mode 100644 index 0000000..47da362 Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu5mxKOzY.woff2 differ diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu72xKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu72xKOzY.woff2 new file mode 100644 index 0000000..22ddee9 Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu72xKOzY.woff2 differ diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7GxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7GxKOzY.woff2 new file mode 100644 index 0000000..8a8de61 Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7GxKOzY.woff2 differ diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7WxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7WxKOzY.woff2 new file mode 100644 index 0000000..6284d2e Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7WxKOzY.woff2 differ diff --git a/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7mxKOzY.woff2 b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7mxKOzY.woff2 new file mode 100644 index 0000000..72ce0e9 Binary files /dev/null and b/deps/Roboto-0.4.9/KFOmCnqEu92Fr1Mu7mxKOzY.woff2 differ diff --git a/deps/Roboto-0.4.9/font.css b/deps/Roboto-0.4.9/font.css new file mode 100644 index 0000000..171e30a --- /dev/null +++ b/deps/Roboto-0.4.9/font.css @@ -0,0 +1,63 @@ +/* cyrillic-ext */ +@font-face { + font-family: 'Roboto'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(KFOmCnqEu92Fr1Mu72xKOzY.woff2) format('woff2'); + unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F; +} +/* cyrillic */ +@font-face { + font-family: 'Roboto'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(KFOmCnqEu92Fr1Mu5mxKOzY.woff2) format('woff2'); + unicode-range: U+0301, U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116; +} +/* greek-ext */ +@font-face { + font-family: 'Roboto'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(KFOmCnqEu92Fr1Mu7mxKOzY.woff2) format('woff2'); + unicode-range: U+1F00-1FFF; +} +/* greek */ +@font-face { + font-family: 'Roboto'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(KFOmCnqEu92Fr1Mu4WxKOzY.woff2) format('woff2'); + unicode-range: U+0370-0377, U+037A-037F, U+0384-038A, U+038C, U+038E-03A1, U+03A3-03FF; +} +/* vietnamese */ +@font-face { + font-family: 'Roboto'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(KFOmCnqEu92Fr1Mu7WxKOzY.woff2) format('woff2'); + unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+0300-0301, U+0303-0304, U+0308-0309, U+0323, U+0329, U+1EA0-1EF9, U+20AB; +} +/* latin-ext */ +@font-face { + font-family: 'Roboto'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(KFOmCnqEu92Fr1Mu7GxKOzY.woff2) format('woff2'); + unicode-range: U+0100-02AF, U+0304, U+0308, U+0329, U+1E00-1E9F, U+1EF2-1EFF, U+2020, U+20A0-20AB, U+20AD-20C0, U+2113, U+2C60-2C7F, U+A720-A7FF; +} +/* latin */ +@font-face { + font-family: 'Roboto'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(KFOmCnqEu92Fr1Mu4mxK.woff2) format('woff2'); + unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+0304, U+0308, U+0329, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; +} diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmY2RjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmY2RjRdE.woff2 new file mode 100644 index 0000000..ea38a67 Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmY2RjRdE.woff2 differ diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYGRjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYGRjRdE.woff2 new file mode 100644 index 0000000..85bd24b Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYGRjRdE.woff2 differ diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYWRjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYWRjRdE.woff2 new file mode 100644 index 0000000..c6a263f Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYWRjRdE.woff2 differ diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYmRjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYmRjRdE.woff2 new file mode 100644 index 0000000..8994710 Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYmRjRdE.woff2 differ diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISma2RjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISma2RjRdE.woff2 new file mode 100644 index 0000000..285676d Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISma2RjRdE.woff2 differ diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmb2Rj.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmb2Rj.woff2 new file mode 100644 index 0000000..d6c2b90 Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmb2Rj.woff2 differ diff --git a/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmbGRjRdE.woff2 b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmbGRjRdE.woff2 new file mode 100644 index 0000000..be86355 Binary files /dev/null and b/deps/Roboto_Slab-0.4.9/BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmbGRjRdE.woff2 differ diff --git a/deps/Roboto_Slab-0.4.9/font.css b/deps/Roboto_Slab-0.4.9/font.css new file mode 100644 index 0000000..3d2dfff --- /dev/null +++ b/deps/Roboto_Slab-0.4.9/font.css @@ -0,0 +1,63 @@ +/* cyrillic-ext */ +@font-face { + font-family: 'Roboto Slab'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYmRjRdE.woff2) format('woff2'); + unicode-range: U+0460-052F, U+1C80-1C88, U+20B4, U+2DE0-2DFF, U+A640-A69F, U+FE2E-FE2F; +} +/* cyrillic */ +@font-face { + font-family: 'Roboto Slab'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISma2RjRdE.woff2) format('woff2'); + unicode-range: U+0301, U+0400-045F, U+0490-0491, U+04B0-04B1, U+2116; +} +/* greek-ext */ +@font-face { + font-family: 'Roboto Slab'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmY2RjRdE.woff2) format('woff2'); + unicode-range: U+1F00-1FFF; +} +/* greek */ +@font-face { + font-family: 'Roboto Slab'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmbGRjRdE.woff2) format('woff2'); + unicode-range: U+0370-0377, U+037A-037F, U+0384-038A, U+038C, U+038E-03A1, U+03A3-03FF; +} +/* vietnamese */ +@font-face { + font-family: 'Roboto Slab'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYGRjRdE.woff2) format('woff2'); + unicode-range: U+0102-0103, U+0110-0111, U+0128-0129, U+0168-0169, U+01A0-01A1, U+01AF-01B0, U+0300-0301, U+0303-0304, U+0308-0309, U+0323, U+0329, U+1EA0-1EF9, U+20AB; +} +/* latin-ext */ +@font-face { + font-family: 'Roboto Slab'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmYWRjRdE.woff2) format('woff2'); + unicode-range: U+0100-02AF, U+0304, U+0308, U+0329, U+1E00-1E9F, U+1EF2-1EFF, U+2020, U+20A0-20AB, U+20AD-20C0, U+2113, U+2C60-2C7F, U+A720-A7FF; +} +/* latin */ +@font-face { + font-family: 'Roboto Slab'; + font-style: normal; + font-weight: 400; + font-display: swap; + src: url(BngbUXZYTXPIvIBgJJSb6s3BzlRRfKOFbvjojISmb2Rj.woff2) format('woff2'); + unicode-range: U+0000-00FF, U+0131, U+0152-0153, U+02BB-02BC, U+02C6, U+02DA, U+02DC, U+0304, U+0308, U+0329, U+2000-206F, U+2074, U+20AC, U+2122, U+2191, U+2193, U+2212, U+2215, U+FEFF, U+FFFD; +} diff --git a/deps/data-deps.txt b/deps/data-deps.txt index c058bfc..441aba5 100644 --- a/deps/data-deps.txt +++ b/deps/data-deps.txt @@ -2,6 +2,6 @@ - - - + + + diff --git a/index.html b/index.html index 1b2ea24..a81d8e8 100644 --- a/index.html +++ b/index.html @@ -9,9 +9,9 @@ Extending mlr3 to functional data analysis • mlr3fda - - - + + + @@ -115,9 +115,9 @@

What is mlr3fda?The goal of mlr3fda is to extend mlr3 to functional data. This is achieved by adding support for functional feature types and providing preprocessing PipeOps that operates on functional columns. For representing functional data, the tfd_reg and tfd_irreg datatypes from the tf package are used and are available after loading mlr3fda:

 library(mlr3fda)
-mlr_reflections$task_feature_types[c("tfr", "tfi")]
-
##         tfr         tfi 
-##   "tfd_reg" "tfd_irreg"
+mlr_reflections$task_feature_types[c("tfr", "tfi")] +#> tfr tfi +#> "tfd_reg" "tfd_irreg"

These datatypes can be used to represent regular and irregular functional data respectively. Currently, Learners that directly operate on functional data are not available, so it is necessary to first extract scalar features from the functional columns.

@@ -125,33 +125,33 @@

What is mlr3fda?Quickstart

Here we will start with the predefined dti (Diffusion Tensor Imaging) task, see tsk("dti")$help() for more details. Besides scalar columns, this task also contains two functional columns cca and rcst.

-
+
 task = tsk("dti")
-task
-
## <TaskRegr:dti> (340 x 4): Diffusion Tensor Imaging (DTI)
-## * Target: pasat
-## * Properties: groups
-## * Features (3):
-##   - tfi (2): cca, rcst
-##   - fct (1): sex
-## * Groups: subject_id
+task +#> <TaskRegr:dti> (340 x 4): Diffusion Tensor Imaging (DTI) +#> * Target: pasat +#> * Properties: groups +#> * Features (3): +#> - tfi (2): cca, rcst +#> - fct (1): sex +#> * Groups: subject_id

To train a model on this task we first need to extract scalar features from the functions. We illustrate this below by extracting the mean value.

-
+
 library(mlr3pipelines)
 
 po_fmean = po("fda.extract", features = "mean")
 
 task_fmean = po_fmean$train(list(task))[[1L]]
-task_fmean$head()
-
##    pasat    sex  cca_mean rcst_mean
-## 1:    31 female 0.4493332 0.4968519
-## 2:    31 female 0.4441292 0.4810724
-## 3:    29 female 0.4257795 0.5102722
-## 4:    34 female 0.4418538 0.5453188
-## 5:    37 female 0.4700994 0.5471177
-## 6:    40 female 0.4873356 0.4969408
+task_fmean$head() +#> pasat sex cca_mean rcst_mean +#> 1: 31 female 0.4493332 0.4968519 +#> 2: 31 female 0.4441292 0.4810724 +#> 3: 29 female 0.4257795 0.5102722 +#> 4: 34 female 0.4418538 0.5453188 +#> 5: 37 female 0.4700994 0.5471177 +#> 6: 40 female 0.4873356 0.4969408

This can be combined with a Lerner into a GraphLearner that first extracts features and then trains a model.

-
+
 # split data into train and test set
 ids = partition(task, stratify = FALSE)
 
@@ -165,16 +165,16 @@ 

Quickstartglrn$train(task, row_ids = ids$train) # make predictions on the test set -glrn$predict(task, row_ids = ids$test)

-
## <PredictionRegr> for 111 observations:
-##     row_ids truth response
-##          11    48 49.99174
-##          12    40 49.99174
-##          13    43 52.42105
-## ---                       
-##         324    57 52.42105
-##         325    57 41.30769
-##         326    60 49.99174
+glrn$predict(task, row_ids = ids$test) +#> <PredictionRegr> for 111 observations: +#> row_ids truth response +#> 11 48 49.99174 +#> 12 40 49.99174 +#> 13 43 52.42105 +#> --- +#> 324 57 52.42105 +#> 325 57 41.30769 +#> 326 60 49.99174

Implemented PipeOps

@@ -186,10 +186,10 @@

Implemented PipeOps -key -label -packages -tags +Key +Label +Packages +Tags diff --git a/pkgdown.yml b/pkgdown.yml index f7bfb67..668089e 100644 --- a/pkgdown.yml +++ b/pkgdown.yml @@ -1,8 +1,8 @@ -pandoc: 2.19.2 +pandoc: 3.1.11 pkgdown: 2.0.7 pkgdown_sha: ~ articles: {} -last_built: 2024-02-07T11:41Z +last_built: 2024-03-18T07:27Z urls: reference: https://mlr3fda.mlr-org.com/reference article: https://mlr3fda.mlr-org.com/articles diff --git a/reference/dti.html b/reference/dti.html index 526907c..0822e00 100644 --- a/reference/dti.html +++ b/reference/dti.html @@ -1,5 +1,5 @@ -The dti dataset — dti • mlr3fdaThe dti dataset — dti • mlr3fda diff --git a/reference/fuel.html b/reference/fuel.html index 39308e2..5af2117 100644 --- a/reference/fuel.html +++ b/reference/fuel.html @@ -1,5 +1,5 @@ -The fuel dataset — fuel • mlr3fdaThe fuel dataset — fuel • mlr3fda diff --git a/reference/index.html b/reference/index.html index 4cecbe4..6a93b99 100644 --- a/reference/index.html +++ b/reference/index.html @@ -1,5 +1,5 @@ -Function reference • mlr3fdaFunction reference • mlr3fda diff --git a/reference/mlr3fda-package.html b/reference/mlr3fda-package.html index 0ae6099..60387a3 100644 --- a/reference/mlr3fda-package.html +++ b/reference/mlr3fda-package.html @@ -1,5 +1,5 @@ -mlr3fda: Extending mlr3 to functional data analysis — mlr3fda-package • mlr3fdamlr3fda: Extending mlr3 to functional data analysis — mlr3fda-package • mlr3fda diff --git a/reference/mlr_pipeops_fda.extract.html b/reference/mlr_pipeops_fda.extract.html index b2914f8..f65edf1 100644 --- a/reference/mlr_pipeops_fda.extract.html +++ b/reference/mlr_pipeops_fda.extract.html @@ -1,6 +1,6 @@ Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract • mlr3fdaExtracts Simple Features from Functional Columns — mlr_pipeops_fda.extract • mlr3fdaFlattens Functional Columns — mlr_pipeops_fda.flatten • mlr3fdaFlattens Functional Columns — mlr_pipeops_fda.flatten • mlr3fdaInterpolate Functional Columns — mlr_pipeops_fda.interpol • mlr3fdaInterpolate Functional Columns — mlr_pipeops_fda.interpol • mlr3fdaSmoothing Functional Columns — mlr_pipeops_fda.smooth • mlr3fdaSmoothing Functional Columns — mlr_pipeops_fda.smooth • mlr3fdaDiffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti • mlr3fdaConstruction
mlr_tasks$get("dti")
-tsk("dti")

+

mlr_tasks$get("dti")
+tsk("dti")

References

diff --git a/reference/mlr_tasks_fuel.html b/reference/mlr_tasks_fuel.html index 6048d23..2a31474 100644 --- a/reference/mlr_tasks_fuel.html +++ b/reference/mlr_tasks_fuel.html @@ -2,7 +2,7 @@ Fuel Regression Task — mlr_tasks_fuel • mlr3fdaFuel Regression Task — mlr_tasks_fuel • mlr3fdaPhoneme Classification Task — mlr_tasks_phoneme • mlr3fdaPhoneme Classification Task — mlr_tasks_phoneme • mlr3fdaThe phoneme dataset — phoneme • mlr3fdaThe phoneme dataset — phoneme • mlr3fda diff --git a/search.json b/search.json index d7c72fc..1b0ccc3 100644 --- a/search.json +++ b/search.json @@ -1 +1 @@ -[{"path":"https://mlr3fda.mlr-org.com/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Sebastian Fischer. Author, maintainer. Maximilian Muecke. Author.","code":""},{"path":"https://mlr3fda.mlr-org.com/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Fischer S, Muecke M (2024). mlr3fda: Extending mlr3 functional data analysis. R package version 0.0.0.9000, https://github.com/mlr-org/mlr3fda, https://mlr3fda.mlr-org.com.","code":"@Manual{, title = {mlr3fda: Extending mlr3 to functional data analysis}, author = {Sebastian Fischer and Maximilian Muecke}, year = {2024}, note = {R package version 0.0.0.9000, https://github.com/mlr-org/mlr3fda}, url = {https://mlr3fda.mlr-org.com}, }"},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"mlr3fda","dir":"","previous_headings":"","what":"Extending mlr3 to functional data analysis","title":"Extending mlr3 to functional data analysis","text":"Package Website: dev Extending mlr3 functional data.","code":""},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Extending mlr3 to functional data analysis","text":"package yet CRAN can install development version mlr3fda GitHub :","code":"# install.packages(\"pak\") pak::pak(\"mlr-org/mlr3fda\")"},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"status","dir":"","previous_headings":"","what":"Status","title":"Extending mlr3 to functional data analysis","text":"mlr3fda still early stage development. Nonetheless, exported functions tested work.","code":""},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"what-is-mlr3fda","dir":"","previous_headings":"","what":"What is mlr3fda?","title":"Extending mlr3 to functional data analysis","text":"goal mlr3fda extend mlr3 functional data. achieved adding support functional feature types providing preprocessing PipeOps operates functional columns. representing functional data, tfd_reg tfd_irreg datatypes tf package used available loading mlr3fda: datatypes can used represent regular irregular functional data respectively. Currently, Learners directly operate functional data available, necessary first extract scalar features functional columns.","code":"library(mlr3fda) mlr_reflections$task_feature_types[c(\"tfr\", \"tfi\")] ## tfr tfi ## \"tfd_reg\" \"tfd_irreg\""},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"quickstart","dir":"","previous_headings":"","what":"Quickstart","title":"Extending mlr3 to functional data analysis","text":"start predefined dti (Diffusion Tensor Imaging) task, see tsk(\"dti\")$help() details. Besides scalar columns, task also contains two functional columns cca rcst. train model task first need extract scalar features functions. illustrate extracting mean value. can combined Lerner GraphLearner first extracts features trains model.","code":"task = tsk(\"dti\") task ## (340 x 4): Diffusion Tensor Imaging (DTI) ## * Target: pasat ## * Properties: groups ## * Features (3): ## - tfi (2): cca, rcst ## - fct (1): sex ## * Groups: subject_id library(mlr3pipelines) po_fmean = po(\"fda.extract\", features = \"mean\") task_fmean = po_fmean$train(list(task))[[1L]] task_fmean$head() ## pasat sex cca_mean rcst_mean ## 1: 31 female 0.4493332 0.4968519 ## 2: 31 female 0.4441292 0.4810724 ## 3: 29 female 0.4257795 0.5102722 ## 4: 34 female 0.4418538 0.5453188 ## 5: 37 female 0.4700994 0.5471177 ## 6: 40 female 0.4873356 0.4969408 # split data into train and test set ids = partition(task, stratify = FALSE) # define a Graph and convert it to a GraphLearner graph = po(\"fda.extract\", features = \"mean\", drop = TRUE) %>>% po(\"learner\", learner = lrn(\"regr.rpart\")) glrn = as_learner(graph) # train the graph learner on the train set glrn$train(task, row_ids = ids$train) # make predictions on the test set glrn$predict(task, row_ids = ids$test) ## for 111 observations: ## row_ids truth response ## 11 48 49.99174 ## 12 40 49.99174 ## 13 43 52.42105 ## --- ## 324 57 52.42105 ## 325 57 41.30769 ## 326 60 49.99174"},{"path":[]},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"bugs-questions-feedback","dir":"","previous_headings":"","what":"Bugs, Questions, Feedback","title":"Extending mlr3 to functional data analysis","text":"mlr3fda free open source software project encourages participation feedback. issues, questions, suggestions feedback, please hesitate open “issue” GitHub page! case problems / bugs, often helpful provide “minimum working example” showcases behaviour (don’t worry bug obvious). Please understand resources project limited: response may sometimes delayed days, feature suggestions may rejected deemed tangential vision behind project.","code":""},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"acknowledgements","dir":"","previous_headings":"","what":"Acknowledgements","title":"Extending mlr3 to functional data analysis","text":"development R-package supported Roche Diagonstics R&D.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/dti.html","id":null,"dir":"Reference","previous_headings":"","what":"The dti dataset — dti","title":"The dti dataset — dti","text":"See mlr_tasks_dti description dataset.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/dti.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"The dti dataset — dti","text":"","code":"data(dti)"},{"path":"https://mlr3fda.mlr-org.com/reference/dti.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"The dti dataset — dti","text":"data frame 340 rows 5 variables","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/fuel.html","id":null,"dir":"Reference","previous_headings":"","what":"The fuel dataset — fuel","title":"The fuel dataset — fuel","text":"See mlr_tasks_fuel description dataset.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/fuel.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"The fuel dataset — fuel","text":"","code":"data(fuel)"},{"path":"https://mlr3fda.mlr-org.com/reference/fuel.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"The fuel dataset — fuel","text":"data frame 129 rows 4 variables","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr3fda-package.html","id":null,"dir":"Reference","previous_headings":"","what":"mlr3fda: Extending mlr3 to functional data analysis — mlr3fda-package","title":"mlr3fda: Extending mlr3 to functional data analysis — mlr3fda-package","text":"Provides extensions functional data analysis mlr3.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr3fda-package.html","id":"data-types","dir":"Reference","previous_headings":"","what":"Data types","title":"mlr3fda: Extending mlr3 to functional data analysis — mlr3fda-package","text":"extend mlr3 functional data, two data types tf package added: tfd_irreg - Irregular functional data, .e. functions observed potentiall different inputs observation. tfd_reg - Regular functional data, .e. functions observed input individual. Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, Au Q, Casalicchio G, Kotthoff L, Bischl B (2019). “mlr3: modern object-oriented machine learning framework R.” Journal Open Source Software. doi:10.21105/joss.01903 , https://joss.theoj.org/papers/10.21105/joss.01903.","code":""},{"path":[]},{"path":"https://mlr3fda.mlr-org.com/reference/mlr3fda-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"mlr3fda: Extending mlr3 to functional data analysis — mlr3fda-package","text":"Maintainer: Sebastian Fischer sebf.fischer@gmail.com (ORCID) Authors: Maximilian Muecke muecke.maximilian@gmail.com (ORCID)","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":null,"dir":"Reference","previous_headings":"","what":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"class extracts simple features functional columns. Note operates values actually observed interpolate.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"parameters","dir":"Reference","previous_headings":"","what":"Parameters","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"parameters parameters inherited PipeOpTaskPreprocSimple, well following parameters: drop :: logical(1) Whether drop original functional features keep extracted features. Note remove features backend, active column role feature. Initial value TRUE. features :: list() | character() list features extract. element can either function string. element function requires following arguments: arg value returns numeric. string elements, following predefined features available: \"mean\", \"max\",\"min\",\"slope\",\"median\",\"var\". Initial c(\"mean\", \"max\", \"min\", \"slope\", \"median\", \"var\") left :: numeric() left boundary window. Initial -Inf. window specified values >=left <=right kept computations. right :: numeric() right boundary window. Initial Inf.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"naming","dir":"Reference","previous_headings":"","what":"Naming","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"new names generally append _{feature} corresponding column name. However can lead name clashes existing columns. solved follows: column called \"x\" feature \"mean\", corresponding new column called \"x_mean\". case duplicates, unique names obtained using make.unique() warning given.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> mlr3pipelines::PipeOpTaskPreprocSimple -> PipeOpFDAExtract","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"mlr3pipelines::PipeOp$help() mlr3pipelines::PipeOp$predict() mlr3pipelines::PipeOp$print() mlr3pipelines::PipeOp$train()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"PipeOpFDAExtract$new() PipeOpFDAExtract$clone()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"Initializes new instance Class.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"","code":"PipeOpFDAExtract$new(id = \"fda.extract\", param_vals = list())"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"id (character(1)) Identifier resulting object, default \"fda.extract\". param_vals (named list) List hyperparameter settings, overwriting hyperparameter settings ","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"objects class cloneable method.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"","code":"PipeOpFDAExtract$clone(deep = FALSE)"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"","code":"library(mlr3pipelines) task = tsk(\"fuel\") po_fmean = po(\"fda.extract\", features = \"mean\") task_fmean = po_fmean$train(list(task))[[1L]] # add more than one feature pop = po(\"fda.extract\", features = c(\"mean\", \"median\", \"var\")) task_features = pop$train(list(task))[[1L]] # add a custom feature po_custom = po(\"fda.extract\", features = list(mean = function(arg, value) mean(value, na.rm = TRUE)) ) task_custom = po_custom$train(list(task))[[1L]]"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":null,"dir":"Reference","previous_headings":"","what":"Flattens Functional Columns — mlr_pipeops_fda.flatten","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"Convert regular functional features (e.g. individuals observed time-points) new columns, one input value function.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"parameters","dir":"Reference","previous_headings":"","what":"Parameters","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"parameters parameters inherited PipeOpTaskPreprocSimple.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"naming","dir":"Reference","previous_headings":"","what":"Naming","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"new names generally append _1, ..., corresponding column name. However can lead name clashes existing columns. solved follows: column called \"x\" feature \"mean\", corresponding new column called \"x_mean\". case duplicates, unique names obtained using make.unique() warning given.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> mlr3pipelines::PipeOpTaskPreprocSimple -> PipeOpFDAFlatten","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"mlr3pipelines::PipeOp$help() mlr3pipelines::PipeOp$predict() mlr3pipelines::PipeOp$print() mlr3pipelines::PipeOp$train()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"PipeOpFDAFlatten$new() PipeOpFDAFlatten$clone()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"Initializes new instance Class.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"","code":"PipeOpFDAFlatten$new(id = \"fda.flatten\", param_vals = list())"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"id (character(1)) Identifier resulting object, default \"fda.flatten\". param_vals (named list) List hyperparameter settings, overwriting hyperparameter settings otherwise set construction. Default list().","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"objects class cloneable method.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"","code":"PipeOpFDAFlatten$clone(deep = FALSE)"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"","code":"library(mlr3pipelines) task = tsk(\"fuel\") pop = po(\"fda.flatten\") task_flat = pop$train(list(task))"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":null,"dir":"Reference","previous_headings":"","what":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"Interpolate functional features (e.g. individuals observed different time-points) common grid. useful want compare functional features across observations. interpolation done using tf package. See tfd() details.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"parameters","dir":"Reference","previous_headings":"","what":"Parameters","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"parameters parameters inherited PipeOpTaskPreprocSimple, well following parameters: grid :: character(1) | numeric() grid use interpolation. grid numeric, must sequence values use grid single value specifies number points use grid, requires left right specified latter case. grid character, must one : \"union\": option creates grid based union argument points provided functional features. means argument points across features \\(t_1, t_2, ..., t_n\\), grid combined unique set points. option generally used argument points vary across observations common grid needed comparison analysis. \"intersect\": Creates grid using intersection argument points feature. grid includes points common across functional features, facilitating direct comparison shared set points. \"minmax\": Generates grid within range maximum minimum argument points minimum maximum argument points across features. bounded grid encapsulates argument point range common features. Note: regular functional data effect argument points . Initial value \"union\". method :: character(1) Defaults \"linear\". One : \"linear\": applies linear interpolation without extrapolation (see tf::tf_approx_linear()). \"spline\": applies cubic spline interpolation (see tf::tf_approx_spline()). \"fill_extend\": applies linear interpolation constant extrapolation (see tf::tf_approx_fill_extend()). \"locf\": applies \"last observation carried forward\" interpolation (see tf::tf_approx_locf()). \"nocb\": applies \"next observation carried backward\" interpolation (see tf::tf_approx_nocb()). left :: numeric() left boundary window. window specified values >=left <=right kept computations. right :: numeric() right boundary window.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> mlr3pipelines::PipeOpTaskPreprocSimple -> PipeOpFDAInterpol","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"mlr3pipelines::PipeOp$help() mlr3pipelines::PipeOp$predict() mlr3pipelines::PipeOp$print() mlr3pipelines::PipeOp$train()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"PipeOpFDAInterpol$new() PipeOpFDAInterpol$clone()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"Initializes new instance Class.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"","code":"PipeOpFDAInterpol$new(id = \"fda.interpol\", param_vals = list())"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"id (character(1)) Identifier resulting object, default \"fda.interpol\". param_vals (named list) List hyperparameter settings, overwriting hyperparameter settings otherwise set construction. Default list().","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"objects class cloneable method.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"","code":"PipeOpFDAInterpol$clone(deep = FALSE)"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"","code":"library(mlr3pipelines) task = tsk(\"fuel\") pop = po(\"fda.interpol\") task_interpol = pop$train(list(task))[[1]] task_interpol$data() #> heatan h20 NIR #> #> 1: 26.7810 2.3000 [1]: (1, 0.2);(2, 0.3);(3, 0.3); ... #> 2: 27.4720 3.0000 [2]: (1, 0.2);(2, 0.3);(3, 0.2); ... #> 3: 23.8400 2.0002 [3]: (1, -0.05);(2, 0.05);(3, -0.08); ... #> 4: 18.1680 1.8500 [4]: (1, -0.08);(2, -0.08);(3, 0.06); ... #> 5: 17.5170 2.3898 [5]: (1, -0.23);(2, -0.12);(3, -0.04); ... #> --- #> 125: 23.8340 2.1100 [6]: (1, -0.04);(2, -0.02);(3, -0.06); ... #> 126: 11.8050 1.6200 [7]: (1, -0.6);(2, -0.6);(3, -0.7); ... #> 127: 8.8315 1.4200 [8]: (1, -0.7);(2, -0.8);(3, -0.8); ... #> 128: 11.3450 1.4800 [9]: (1,-0.058);(2,-0.046);(3,-0.005); ... #> 129: 28.9940 2.5000 [10]: (1, 0.1);(2, 0.1);(3, 0.2); ... #> UVVIS #> #> 1: [1]: (1, 0.9);(2, 0.7);(3, 0.8); ... #> 2: [2]: (1, -0.9);(2, -1.3);(3, -0.8); ... #> 3: [3]: (1,-0.08);(2,-0.29);(3,-0.20); ... #> 4: [4]: (1, -0.6);(2, -0.5);(3, -0.3); ... #> 5: [5]: (1, -0.6);(2, -1.1);(3, -0.7); ... #> --- #> 125: [6]: (1, -0.5);(2, -0.7);(3, -0.6); ... #> 126: [7]: (1, -1.0);(2, -0.8);(3, -1.1); ... #> 127: [8]: (1, -0.9);(2, -0.6);(3, -1.0); ... #> 128: [9]: (1, 0.5);(2, 0.6);(3, 0.6); ... #> 129: [10]: (1, -0.5);(2, -1.3);(3, -0.8); ..."},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":null,"dir":"Reference","previous_headings":"","what":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"Smoothes functional data using tf::tf_smooth(). preprocessing operator similar PipeOpFDAInterpol, however interpolate unobserved x-values, rather smooths observed values.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"parameters","dir":"Reference","previous_headings":"","what":"Parameters","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"parameters parameters inherited PipeOpTaskPreprocSimple, well following parameters: method :: character(1) One : \"lowess\": locally weighted scatterplot smoothing (default) \"rollmean\": rolling mean \"rollmedian\": rolling meadian \"savgol\": Savitzky-Golay filtering methods \"lowess\" ignore non-equidistant arg values. args :: named list() List named arguments passed tf_smooth(). See help page tf_smooth() default values. verbose :: logical(1) Whether print messages transformation. initialized FALSE.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> mlr3pipelines::PipeOpTaskPreprocSimple -> PipeOpFDASmooth","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"mlr3pipelines::PipeOp$help() mlr3pipelines::PipeOp$predict() mlr3pipelines::PipeOp$print() mlr3pipelines::PipeOp$train()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"PipeOpFDASmooth$new() PipeOpFDASmooth$clone()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"Initializes new instance Class.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"","code":"PipeOpFDASmooth$new(id = \"fda.smooth\", param_vals = list())"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"id (character(1)) Identifier resulting object, default \"fda.smooth\". param_vals (named list) List hyperparameter settings, overwriting hyperparameter settings otherwise set construction. Default list().","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"objects class cloneable method.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"","code":"PipeOpFDASmooth$clone(deep = FALSE)"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"","code":"library(mlr3pipelines) task = tsk(\"fuel\") po_smooth = po(\"fda.smooth\", method = \"rollmean\", args = list(k = 5)) task_smooth = po_smooth$train(list(task))[[1L]] task_smooth #> (129 x 4): Spectral Data of Fossil Fuels #> * Target: heatan #> * Properties: - #> * Features (3): #> - tfr (2): NIR, UVVIS #> - dbl (1): h20 task_smooth$data(cols = c(\"NIR\", \"UVVIS\")) #> NIR #> #> 1: [1]: (1, 0.3);(2, 0.3);(3, 0.3); ... #> 2: [2]: (1, 0.3);(2, 0.3);(3, 0.3); ... #> 3: [3]: (1,-0.01);(2,-0.01);(3,-0.01); ... #> 4: [4]: (1,-0.03);(2,-0.03);(3,-0.03); ... #> 5: [5]: (1, -0.1);(2, -0.1);(3, -0.1); ... #> --- #> 125: [6]: (1,-0.04);(2,-0.04);(3,-0.04); ... #> 126: [7]: (1, -0.6);(2, -0.6);(3, -0.6); ... #> 127: [8]: (1, -0.8);(2, -0.8);(3, -0.8); ... #> 128: [9]: (1,-0.05);(2,-0.05);(3,-0.05); ... #> 129: [10]: (1, 0.1);(2, 0.1);(3, 0.1); ... #> UVVIS #> #> 1: [1]: (1, 0.7);(2, 0.7);(3, 0.7); ... #> 2: [2]: (1,-0.9);(2,-0.9);(3,-0.9); ... #> 3: [3]: (1,-0.2);(2,-0.2);(3,-0.2); ... #> 4: [4]: (1,-0.5);(2,-0.5);(3,-0.5); ... #> 5: [5]: (1,-0.8);(2,-0.8);(3,-0.8); ... #> --- #> 125: [6]: (1,-0.6);(2,-0.6);(3,-0.6); ... #> 126: [7]: (1,-0.9);(2,-0.9);(3,-0.9); ... #> 127: [8]: (1,-0.8);(2,-0.8);(3,-0.8); ... #> 128: [9]: (1, 0.6);(2, 0.6);(3, 0.6); ... #> 129: [10]: (1,-0.8);(2,-0.8);(3,-0.8); ..."},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_dti.html","id":null,"dir":"Reference","previous_headings":"","what":"Diffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti","title":"Diffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti","text":"dataset contains two functional covariates three scalar covariate. goal predict PASAT score. pasat represents PASAT score vist. subject_id represents subject ID. cca represents fractional anisotropy tract profiles corpus callosum. sex indicates subject's sex. rcst represents fractional anisotropy tract profiles right corticospinal tract. Rows containing NAs removed. subset full dataset, contained package refund.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_dti.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Diffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti","text":"R6::R6Class inheriting TaskRegr.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_dti.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Diffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti","text":"","code":"mlr_tasks$get(\"dti\") tsk(\"dti\")"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_dti.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Diffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti","text":"Goldsmith, Jeff, Bobb, Jennifer, Crainiceanu, M C, Caffo, Brian, Reich, Daniel (2011). “Penalized functional regression.” Journal Computational Graphical Statistics, 20(4), 830--851. Brain dataset courtesy Gordon Kindlmann Scientific Computing Imaging Institute, University Utah, Andrew Alexander, W. M. Keck Laboratory Functional Brain Imaging Behavior, University Wisconsin-Madison.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_fuel.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuel Regression Task — mlr_tasks_fuel","title":"Fuel Regression Task — mlr_tasks_fuel","text":"dataset contains two functional covariates one scalar covariate. goal predict heat value fuel based ultraviolet radiation spectrum infrared ray radiation one scalar column called h2o. subset full dataset, contained package FDboost.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_fuel.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Fuel Regression Task — mlr_tasks_fuel","text":"R6::R6Class inheriting TaskRegr.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_fuel.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Fuel Regression Task — mlr_tasks_fuel","text":"","code":"mlr_tasks$get(\"fuel\") tsk(\"fuel\")"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_fuel.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fuel Regression Task — mlr_tasks_fuel","text":"Brockhaus, Sarah, Scheipl, Fabian, Hothorn, Torsten, Greven, Sonja (2015). “functional linear array model.” Statistical Modelling, 15(3), 279--300.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_phoneme.html","id":null,"dir":"Reference","previous_headings":"","what":"Phoneme Classification Task — mlr_tasks_phoneme","title":"Phoneme Classification Task — mlr_tasks_phoneme","text":"task contains single functional covariate 5 equally big classes (aa, ao, dcl, iy, sh). aim predict class phoneme functional, log-periodogram. subset full dataset, contained package fda.usc.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_phoneme.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Phoneme Classification Task — mlr_tasks_phoneme","text":"R6::R6Class inheriting TaskClassif.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_phoneme.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Phoneme Classification Task — mlr_tasks_phoneme","text":"","code":"mlr_tasks$get(\"phoneme\") tsk(\"phoneme\")"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_phoneme.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Phoneme Classification Task — mlr_tasks_phoneme","text":"Ferraty, Frédric, Vieu, Philippe (2003). “Curves discrimination: nonparametric functional approach.” Computational Statistics & Data Analysis, 44(1-2), 161--173.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/phoneme.html","id":null,"dir":"Reference","previous_headings":"","what":"The phoneme dataset — phoneme","title":"The phoneme dataset — phoneme","text":"See mlr_tasks_phoneme description dataset.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/phoneme.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"The phoneme dataset — phoneme","text":"","code":"data(phoneme)"},{"path":"https://mlr3fda.mlr-org.com/reference/phoneme.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"The phoneme dataset — phoneme","text":"data frame 250 rows 2 variables","code":""}] +[{"path":"https://mlr3fda.mlr-org.com/authors.html","id":null,"dir":"","previous_headings":"","what":"Authors","title":"Authors and Citation","text":"Sebastian Fischer. Author, maintainer. Maximilian Muecke. Author.","code":""},{"path":"https://mlr3fda.mlr-org.com/authors.html","id":"citation","dir":"","previous_headings":"","what":"Citation","title":"Authors and Citation","text":"Fischer S, Muecke M (2024). mlr3fda: Extending mlr3 functional data analysis. R package version 0.0.0.9000, https://github.com/mlr-org/mlr3fda, https://mlr3fda.mlr-org.com.","code":"@Manual{, title = {mlr3fda: Extending mlr3 to functional data analysis}, author = {Sebastian Fischer and Maximilian Muecke}, year = {2024}, note = {R package version 0.0.0.9000, https://github.com/mlr-org/mlr3fda}, url = {https://mlr3fda.mlr-org.com}, }"},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"mlr3fda","dir":"","previous_headings":"","what":"Extending mlr3 to functional data analysis","title":"Extending mlr3 to functional data analysis","text":"Package Website: dev Extending mlr3 functional data.","code":""},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"installation","dir":"","previous_headings":"","what":"Installation","title":"Extending mlr3 to functional data analysis","text":"package yet CRAN can install development version mlr3fda GitHub :","code":"# install.packages(\"pak\") pak::pak(\"mlr-org/mlr3fda\")"},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"status","dir":"","previous_headings":"","what":"Status","title":"Extending mlr3 to functional data analysis","text":"mlr3fda still early stage development. Nonetheless, exported functions tested work.","code":""},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"what-is-mlr3fda","dir":"","previous_headings":"","what":"What is mlr3fda?","title":"Extending mlr3 to functional data analysis","text":"goal mlr3fda extend mlr3 functional data. achieved adding support functional feature types providing preprocessing PipeOps operates functional columns. representing functional data, tfd_reg tfd_irreg datatypes tf package used available loading mlr3fda: datatypes can used represent regular irregular functional data respectively. Currently, Learners directly operate functional data available, necessary first extract scalar features functional columns.","code":"library(mlr3fda) mlr_reflections$task_feature_types[c(\"tfr\", \"tfi\")] #> tfr tfi #> \"tfd_reg\" \"tfd_irreg\""},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"quickstart","dir":"","previous_headings":"","what":"Quickstart","title":"Extending mlr3 to functional data analysis","text":"start predefined dti (Diffusion Tensor Imaging) task, see tsk(\"dti\")$help() details. Besides scalar columns, task also contains two functional columns cca rcst. train model task first need extract scalar features functions. illustrate extracting mean value. can combined Lerner GraphLearner first extracts features trains model.","code":"task = tsk(\"dti\") task #> (340 x 4): Diffusion Tensor Imaging (DTI) #> * Target: pasat #> * Properties: groups #> * Features (3): #> - tfi (2): cca, rcst #> - fct (1): sex #> * Groups: subject_id library(mlr3pipelines) po_fmean = po(\"fda.extract\", features = \"mean\") task_fmean = po_fmean$train(list(task))[[1L]] task_fmean$head() #> pasat sex cca_mean rcst_mean #> 1: 31 female 0.4493332 0.4968519 #> 2: 31 female 0.4441292 0.4810724 #> 3: 29 female 0.4257795 0.5102722 #> 4: 34 female 0.4418538 0.5453188 #> 5: 37 female 0.4700994 0.5471177 #> 6: 40 female 0.4873356 0.4969408 # split data into train and test set ids = partition(task, stratify = FALSE) # define a Graph and convert it to a GraphLearner graph = po(\"fda.extract\", features = \"mean\", drop = TRUE) %>>% po(\"learner\", learner = lrn(\"regr.rpart\")) glrn = as_learner(graph) # train the graph learner on the train set glrn$train(task, row_ids = ids$train) # make predictions on the test set glrn$predict(task, row_ids = ids$test) #> for 111 observations: #> row_ids truth response #> 11 48 49.99174 #> 12 40 49.99174 #> 13 43 52.42105 #> --- #> 324 57 52.42105 #> 325 57 41.30769 #> 326 60 49.99174"},{"path":[]},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"bugs-questions-feedback","dir":"","previous_headings":"","what":"Bugs, Questions, Feedback","title":"Extending mlr3 to functional data analysis","text":"mlr3fda free open source software project encourages participation feedback. issues, questions, suggestions feedback, please hesitate open “issue” GitHub page! case problems / bugs, often helpful provide “minimum working example” showcases behaviour (don’t worry bug obvious). Please understand resources project limited: response may sometimes delayed days, feature suggestions may rejected deemed tangential vision behind project.","code":""},{"path":"https://mlr3fda.mlr-org.com/index.html","id":"acknowledgements","dir":"","previous_headings":"","what":"Acknowledgements","title":"Extending mlr3 to functional data analysis","text":"development R-package supported Roche Diagonstics R&D.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/dti.html","id":null,"dir":"Reference","previous_headings":"","what":"The dti dataset — dti","title":"The dti dataset — dti","text":"See mlr_tasks_dti description dataset.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/dti.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"The dti dataset — dti","text":"","code":"data(dti)"},{"path":"https://mlr3fda.mlr-org.com/reference/dti.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"The dti dataset — dti","text":"data frame 340 rows 5 variables","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/fuel.html","id":null,"dir":"Reference","previous_headings":"","what":"The fuel dataset — fuel","title":"The fuel dataset — fuel","text":"See mlr_tasks_fuel description dataset.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/fuel.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"The fuel dataset — fuel","text":"","code":"data(fuel)"},{"path":"https://mlr3fda.mlr-org.com/reference/fuel.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"The fuel dataset — fuel","text":"data frame 129 rows 4 variables","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr3fda-package.html","id":null,"dir":"Reference","previous_headings":"","what":"mlr3fda: Extending mlr3 to functional data analysis — mlr3fda-package","title":"mlr3fda: Extending mlr3 to functional data analysis — mlr3fda-package","text":"Provides extensions functional data analysis mlr3.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr3fda-package.html","id":"data-types","dir":"Reference","previous_headings":"","what":"Data types","title":"mlr3fda: Extending mlr3 to functional data analysis — mlr3fda-package","text":"extend mlr3 functional data, two data types tf package added: tfd_irreg - Irregular functional data, .e. functions observed potentiall different inputs observation. tfd_reg - Regular functional data, .e. functions observed input individual. Lang M, Binder M, Richter J, Schratz P, Pfisterer F, Coors S, Au Q, Casalicchio G, Kotthoff L, Bischl B (2019). “mlr3: modern object-oriented machine learning framework R.” Journal Open Source Software. doi:10.21105/joss.01903 , https://joss.theoj.org/papers/10.21105/joss.01903.","code":""},{"path":[]},{"path":"https://mlr3fda.mlr-org.com/reference/mlr3fda-package.html","id":"author","dir":"Reference","previous_headings":"","what":"Author","title":"mlr3fda: Extending mlr3 to functional data analysis — mlr3fda-package","text":"Maintainer: Sebastian Fischer sebf.fischer@gmail.com (ORCID) Authors: Maximilian Muecke muecke.maximilian@gmail.com (ORCID)","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":null,"dir":"Reference","previous_headings":"","what":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"class extracts simple features functional columns. Note operates values actually observed interpolate.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"parameters","dir":"Reference","previous_headings":"","what":"Parameters","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"parameters parameters inherited PipeOpTaskPreprocSimple, well following parameters: drop :: logical(1) Whether drop original functional features keep extracted features. Note remove features backend, active column role feature. Initial value TRUE. features :: list() | character() list features extract. element can either function string. element function requires following arguments: arg value returns numeric. string elements, following predefined features available: \"mean\", \"max\",\"min\",\"slope\",\"median\",\"var\". Initial c(\"mean\", \"max\", \"min\", \"slope\", \"median\", \"var\") left :: numeric() left boundary window. Initial -Inf. window specified values >=left <=right kept computations. right :: numeric() right boundary window. Initial Inf.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"naming","dir":"Reference","previous_headings":"","what":"Naming","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"new names generally append _{feature} corresponding column name. However can lead name clashes existing columns. solved follows: column called \"x\" feature \"mean\", corresponding new column called \"x_mean\". case duplicates, unique names obtained using make.unique() warning given.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> mlr3pipelines::PipeOpTaskPreprocSimple -> PipeOpFDAExtract","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"mlr3pipelines::PipeOp$help() mlr3pipelines::PipeOp$predict() mlr3pipelines::PipeOp$print() mlr3pipelines::PipeOp$train()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"PipeOpFDAExtract$new() PipeOpFDAExtract$clone()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"Initializes new instance Class.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"","code":"PipeOpFDAExtract$new(id = \"fda.extract\", param_vals = list())"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"id (character(1)) Identifier resulting object, default \"fda.extract\". param_vals (named list) List hyperparameter settings, overwriting hyperparameter settings ","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"objects class cloneable method.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"","code":"PipeOpFDAExtract$clone(deep = FALSE)"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Extracts Simple Features from Functional Columns — mlr_pipeops_fda.extract","text":"","code":"library(mlr3pipelines) task = tsk(\"fuel\") po_fmean = po(\"fda.extract\", features = \"mean\") task_fmean = po_fmean$train(list(task))[[1L]] # add more than one feature pop = po(\"fda.extract\", features = c(\"mean\", \"median\", \"var\")) task_features = pop$train(list(task))[[1L]] # add a custom feature po_custom = po(\"fda.extract\", features = list(mean = function(arg, value) mean(value, na.rm = TRUE)) ) task_custom = po_custom$train(list(task))[[1L]]"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":null,"dir":"Reference","previous_headings":"","what":"Flattens Functional Columns — mlr_pipeops_fda.flatten","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"Convert regular functional features (e.g. individuals observed time-points) new columns, one input value function.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"parameters","dir":"Reference","previous_headings":"","what":"Parameters","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"parameters parameters inherited PipeOpTaskPreprocSimple.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"naming","dir":"Reference","previous_headings":"","what":"Naming","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"new names generally append _1, ..., corresponding column name. However can lead name clashes existing columns. solved follows: column called \"x\" feature \"mean\", corresponding new column called \"x_mean\". case duplicates, unique names obtained using make.unique() warning given.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> mlr3pipelines::PipeOpTaskPreprocSimple -> PipeOpFDAFlatten","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"mlr3pipelines::PipeOp$help() mlr3pipelines::PipeOp$predict() mlr3pipelines::PipeOp$print() mlr3pipelines::PipeOp$train()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"PipeOpFDAFlatten$new() PipeOpFDAFlatten$clone()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"Initializes new instance Class.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"","code":"PipeOpFDAFlatten$new(id = \"fda.flatten\", param_vals = list())"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"id (character(1)) Identifier resulting object, default \"fda.flatten\". param_vals (named list) List hyperparameter settings, overwriting hyperparameter settings otherwise set construction. Default list().","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"objects class cloneable method.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"","code":"PipeOpFDAFlatten$clone(deep = FALSE)"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Flattens Functional Columns — mlr_pipeops_fda.flatten","text":"","code":"library(mlr3pipelines) task = tsk(\"fuel\") pop = po(\"fda.flatten\") task_flat = pop$train(list(task))"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":null,"dir":"Reference","previous_headings":"","what":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"Interpolate functional features (e.g. individuals observed different time-points) common grid. useful want compare functional features across observations. interpolation done using tf package. See tfd() details.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"parameters","dir":"Reference","previous_headings":"","what":"Parameters","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"parameters parameters inherited PipeOpTaskPreprocSimple, well following parameters: grid :: character(1) | numeric() grid use interpolation. grid numeric, must sequence values use grid single value specifies number points use grid, requires left right specified latter case. grid character, must one : \"union\": option creates grid based union argument points provided functional features. means argument points across features \\(t_1, t_2, ..., t_n\\), grid combined unique set points. option generally used argument points vary across observations common grid needed comparison analysis. \"intersect\": Creates grid using intersection argument points feature. grid includes points common across functional features, facilitating direct comparison shared set points. \"minmax\": Generates grid within range maximum minimum argument points minimum maximum argument points across features. bounded grid encapsulates argument point range common features. Note: regular functional data effect argument points . Initial value \"union\". method :: character(1) Defaults \"linear\". One : \"linear\": applies linear interpolation without extrapolation (see tf::tf_approx_linear()). \"spline\": applies cubic spline interpolation (see tf::tf_approx_spline()). \"fill_extend\": applies linear interpolation constant extrapolation (see tf::tf_approx_fill_extend()). \"locf\": applies \"last observation carried forward\" interpolation (see tf::tf_approx_locf()). \"nocb\": applies \"next observation carried backward\" interpolation (see tf::tf_approx_nocb()). left :: numeric() left boundary window. window specified values >=left <=right kept computations. right :: numeric() right boundary window.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> mlr3pipelines::PipeOpTaskPreprocSimple -> PipeOpFDAInterpol","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"mlr3pipelines::PipeOp$help() mlr3pipelines::PipeOp$predict() mlr3pipelines::PipeOp$print() mlr3pipelines::PipeOp$train()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"PipeOpFDAInterpol$new() PipeOpFDAInterpol$clone()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"Initializes new instance Class.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"","code":"PipeOpFDAInterpol$new(id = \"fda.interpol\", param_vals = list())"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"id (character(1)) Identifier resulting object, default \"fda.interpol\". param_vals (named list) List hyperparameter settings, overwriting hyperparameter settings otherwise set construction. Default list().","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"objects class cloneable method.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"","code":"PipeOpFDAInterpol$clone(deep = FALSE)"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Interpolate Functional Columns — mlr_pipeops_fda.interpol","text":"","code":"library(mlr3pipelines) task = tsk(\"fuel\") pop = po(\"fda.interpol\") task_interpol = pop$train(list(task))[[1]] task_interpol$data() #> heatan h20 NIR #> #> 1: 26.7810 2.3000 [1]: (1, 0.2);(2, 0.3);(3, 0.3); ... #> 2: 27.4720 3.0000 [2]: (1, 0.2);(2, 0.3);(3, 0.2); ... #> 3: 23.8400 2.0002 [3]: (1, -0.05);(2, 0.05);(3, -0.08); ... #> 4: 18.1680 1.8500 [4]: (1, -0.08);(2, -0.08);(3, 0.06); ... #> 5: 17.5170 2.3898 [5]: (1, -0.23);(2, -0.12);(3, -0.04); ... #> --- #> 125: 23.8340 2.1100 [6]: (1, -0.04);(2, -0.02);(3, -0.06); ... #> 126: 11.8050 1.6200 [7]: (1, -0.6);(2, -0.6);(3, -0.7); ... #> 127: 8.8315 1.4200 [8]: (1, -0.7);(2, -0.8);(3, -0.8); ... #> 128: 11.3450 1.4800 [9]: (1,-0.058);(2,-0.046);(3,-0.005); ... #> 129: 28.9940 2.5000 [10]: (1, 0.1);(2, 0.1);(3, 0.2); ... #> UVVIS #> #> 1: [1]: (1, 0.9);(2, 0.7);(3, 0.8); ... #> 2: [2]: (1, -0.9);(2, -1.3);(3, -0.8); ... #> 3: [3]: (1,-0.08);(2,-0.29);(3,-0.20); ... #> 4: [4]: (1, -0.6);(2, -0.5);(3, -0.3); ... #> 5: [5]: (1, -0.6);(2, -1.1);(3, -0.7); ... #> --- #> 125: [6]: (1, -0.5);(2, -0.7);(3, -0.6); ... #> 126: [7]: (1, -1.0);(2, -0.8);(3, -1.1); ... #> 127: [8]: (1, -0.9);(2, -0.6);(3, -1.0); ... #> 128: [9]: (1, 0.5);(2, 0.6);(3, 0.6); ... #> 129: [10]: (1, -0.5);(2, -1.3);(3, -0.8); ..."},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":null,"dir":"Reference","previous_headings":"","what":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"Smoothes functional data using tf::tf_smooth(). preprocessing operator similar PipeOpFDAInterpol, however interpolate unobserved x-values, rather smooths observed values.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"parameters","dir":"Reference","previous_headings":"","what":"Parameters","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"parameters parameters inherited PipeOpTaskPreprocSimple, well following parameters: method :: character(1) One : \"lowess\": locally weighted scatterplot smoothing (default) \"rollmean\": rolling mean \"rollmedian\": rolling meadian \"savgol\": Savitzky-Golay filtering methods \"lowess\" ignore non-equidistant arg values. args :: named list() List named arguments passed tf_smooth(). See help page tf_smooth() default values. verbose :: logical(1) Whether print messages transformation. initialized FALSE.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"super-classes","dir":"Reference","previous_headings":"","what":"Super classes","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"mlr3pipelines::PipeOp -> mlr3pipelines::PipeOpTaskPreproc -> mlr3pipelines::PipeOpTaskPreprocSimple -> PipeOpFDASmooth","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"methods","dir":"Reference","previous_headings":"","what":"Methods","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"mlr3pipelines::PipeOp$help() mlr3pipelines::PipeOp$predict() mlr3pipelines::PipeOp$print() mlr3pipelines::PipeOp$train()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"public-methods","dir":"Reference","previous_headings":"","what":"Public methods","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"PipeOpFDASmooth$new() PipeOpFDASmooth$clone()","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"method-new-","dir":"Reference","previous_headings":"","what":"Method new()","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"Initializes new instance Class.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"usage","dir":"Reference","previous_headings":"","what":"Usage","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"","code":"PipeOpFDASmooth$new(id = \"fda.smooth\", param_vals = list())"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"arguments","dir":"Reference","previous_headings":"","what":"Arguments","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"id (character(1)) Identifier resulting object, default \"fda.smooth\". param_vals (named list) List hyperparameter settings, overwriting hyperparameter settings otherwise set construction. Default list().","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"method-clone-","dir":"Reference","previous_headings":"","what":"Method clone()","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"objects class cloneable method.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"usage-1","dir":"Reference","previous_headings":"","what":"Usage","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"","code":"PipeOpFDASmooth$clone(deep = FALSE)"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"arguments-1","dir":"Reference","previous_headings":"","what":"Arguments","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"deep Whether make deep clone.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth.html","id":"ref-examples","dir":"Reference","previous_headings":"","what":"Examples","title":"Smoothing Functional Columns — mlr_pipeops_fda.smooth","text":"","code":"library(mlr3pipelines) task = tsk(\"fuel\") po_smooth = po(\"fda.smooth\", method = \"rollmean\", args = list(k = 5)) task_smooth = po_smooth$train(list(task))[[1L]] task_smooth #> (129 x 4): Spectral Data of Fossil Fuels #> * Target: heatan #> * Properties: - #> * Features (3): #> - tfr (2): NIR, UVVIS #> - dbl (1): h20 task_smooth$data(cols = c(\"NIR\", \"UVVIS\")) #> NIR #> #> 1: [1]: (1, 0.3);(2, 0.3);(3, 0.3); ... #> 2: [2]: (1, 0.3);(2, 0.3);(3, 0.3); ... #> 3: [3]: (1,-0.01);(2,-0.01);(3,-0.01); ... #> 4: [4]: (1,-0.03);(2,-0.03);(3,-0.03); ... #> 5: [5]: (1, -0.1);(2, -0.1);(3, -0.1); ... #> --- #> 125: [6]: (1,-0.04);(2,-0.04);(3,-0.04); ... #> 126: [7]: (1, -0.6);(2, -0.6);(3, -0.6); ... #> 127: [8]: (1, -0.8);(2, -0.8);(3, -0.8); ... #> 128: [9]: (1,-0.05);(2,-0.05);(3,-0.05); ... #> 129: [10]: (1, 0.1);(2, 0.1);(3, 0.1); ... #> UVVIS #> #> 1: [1]: (1, 0.7);(2, 0.7);(3, 0.7); ... #> 2: [2]: (1,-0.9);(2,-0.9);(3,-0.9); ... #> 3: [3]: (1,-0.2);(2,-0.2);(3,-0.2); ... #> 4: [4]: (1,-0.5);(2,-0.5);(3,-0.5); ... #> 5: [5]: (1,-0.8);(2,-0.8);(3,-0.8); ... #> --- #> 125: [6]: (1,-0.6);(2,-0.6);(3,-0.6); ... #> 126: [7]: (1,-0.9);(2,-0.9);(3,-0.9); ... #> 127: [8]: (1,-0.8);(2,-0.8);(3,-0.8); ... #> 128: [9]: (1, 0.6);(2, 0.6);(3, 0.6); ... #> 129: [10]: (1,-0.8);(2,-0.8);(3,-0.8); ..."},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_dti.html","id":null,"dir":"Reference","previous_headings":"","what":"Diffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti","title":"Diffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti","text":"dataset contains two functional covariates three scalar covariate. goal predict PASAT score. pasat represents PASAT score vist. subject_id represents subject ID. cca represents fractional anisotropy tract profiles corpus callosum. sex indicates subject's sex. rcst represents fractional anisotropy tract profiles right corticospinal tract. Rows containing NAs removed. subset full dataset, contained package refund.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_dti.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Diffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti","text":"R6::R6Class inheriting TaskRegr.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_dti.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Diffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti","text":"","code":"mlr_tasks$get(\"dti\") tsk(\"dti\")"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_dti.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Diffusion Tensor Imaging (DTI) Regression Task — mlr_tasks_dti","text":"Goldsmith, Jeff, Bobb, Jennifer, Crainiceanu, M C, Caffo, Brian, Reich, Daniel (2011). “Penalized functional regression.” Journal Computational Graphical Statistics, 20(4), 830--851. Brain dataset courtesy Gordon Kindlmann Scientific Computing Imaging Institute, University Utah, Andrew Alexander, W. M. Keck Laboratory Functional Brain Imaging Behavior, University Wisconsin-Madison.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_fuel.html","id":null,"dir":"Reference","previous_headings":"","what":"Fuel Regression Task — mlr_tasks_fuel","title":"Fuel Regression Task — mlr_tasks_fuel","text":"dataset contains two functional covariates one scalar covariate. goal predict heat value fuel based ultraviolet radiation spectrum infrared ray radiation one scalar column called h2o. subset full dataset, contained package FDboost.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_fuel.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Fuel Regression Task — mlr_tasks_fuel","text":"R6::R6Class inheriting TaskRegr.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_fuel.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Fuel Regression Task — mlr_tasks_fuel","text":"","code":"mlr_tasks$get(\"fuel\") tsk(\"fuel\")"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_fuel.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Fuel Regression Task — mlr_tasks_fuel","text":"Brockhaus, Sarah, Scheipl, Fabian, Hothorn, Torsten, Greven, Sonja (2015). “functional linear array model.” Statistical Modelling, 15(3), 279--300.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_phoneme.html","id":null,"dir":"Reference","previous_headings":"","what":"Phoneme Classification Task — mlr_tasks_phoneme","title":"Phoneme Classification Task — mlr_tasks_phoneme","text":"task contains single functional covariate 5 equally big classes (aa, ao, dcl, iy, sh). aim predict class phoneme functional, log-periodogram. subset full dataset, contained package fda.usc.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_phoneme.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"Phoneme Classification Task — mlr_tasks_phoneme","text":"R6::R6Class inheriting TaskClassif.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_phoneme.html","id":"construction","dir":"Reference","previous_headings":"","what":"Construction","title":"Phoneme Classification Task — mlr_tasks_phoneme","text":"","code":"mlr_tasks$get(\"phoneme\") tsk(\"phoneme\")"},{"path":"https://mlr3fda.mlr-org.com/reference/mlr_tasks_phoneme.html","id":"references","dir":"Reference","previous_headings":"","what":"References","title":"Phoneme Classification Task — mlr_tasks_phoneme","text":"Ferraty, Frédric, Vieu, Philippe (2003). “Curves discrimination: nonparametric functional approach.” Computational Statistics & Data Analysis, 44(1-2), 161--173.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/phoneme.html","id":null,"dir":"Reference","previous_headings":"","what":"The phoneme dataset — phoneme","title":"The phoneme dataset — phoneme","text":"See mlr_tasks_phoneme description dataset.","code":""},{"path":"https://mlr3fda.mlr-org.com/reference/phoneme.html","id":"ref-usage","dir":"Reference","previous_headings":"","what":"Usage","title":"The phoneme dataset — phoneme","text":"","code":"data(phoneme)"},{"path":"https://mlr3fda.mlr-org.com/reference/phoneme.html","id":"format","dir":"Reference","previous_headings":"","what":"Format","title":"The phoneme dataset — phoneme","text":"data frame 250 rows 2 variables","code":""}]