diff --git a/README.Rmd b/README.Rmd index bb390f0..03a2356 100644 --- a/README.Rmd +++ b/README.Rmd @@ -84,7 +84,7 @@ This can be combined with a `Lerner` into a `GraphLearner` that first extracts f ```{r graph} # split data into train and test set -ids = partition(task, stratify = FALSE) +ids = partition(task) # define a Graph and convert it to a GraphLearner graph = po("fda.extract", features = "mean", drop = TRUE) %>>% @@ -106,7 +106,7 @@ content = as.data.table(mlr_pipeops, objects = TRUE) content = content[map_lgl(tags, function(t) "fda" %in% t), .(key, label, packages, tags)] content[, packages := map(packages, function(x) setdiff(x, c("mlr3pipelines", "mlr3fda")))] content[, `:=`( - key = sprintf("[%1$s](https://mlr3fda.mlr-org.com/dev/reference/mlr_pipeops_%1$s)", key), + key = sprintf("[%1$s](https://mlr3fda.mlr-org.com/reference/mlr_pipeops_%1$s)", key), packages = map_chr(packages, function(pkg) { toString(ifelse( pkg %in% c("stats", "graphics", "datasets"), pkg, sprintf("[%1$s](https://cran.r-project.org/package=%1$s)", pkg) diff --git a/README.md b/README.md index 25ef113..71c45e9 100644 --- a/README.md +++ b/README.md @@ -94,7 +94,7 @@ extracts features and then trains a model. ``` r # split data into train and test set -ids = partition(task, stratify = FALSE) +ids = partition(task) # define a Graph and convert it to a GraphLearner graph = po("fda.extract", features = "mean", drop = TRUE) %>>% @@ -108,27 +108,27 @@ glrn$train(task, row_ids = ids$train) # make predictions on the test set glrn$predict(task, row_ids = ids$test) #> for 111 observations: -#> row_ids truth response -#> 11 48 49.99174 -#> 12 40 49.99174 -#> 13 43 52.42105 -#> --- -#> 324 57 52.42105 -#> 325 57 41.30769 -#> 326 60 49.99174 +#> row_ids truth response +#> 11 48 49.99174 +#> 12 40 49.99174 +#> 13 43 52.42105 +#> --- --- --- +#> 324 57 52.42105 +#> 325 57 41.30769 +#> 326 60 49.99174 ``` ## Implemented PipeOps | Key | Label | Packages | Tags | |:---|:---|:---|:---| -| [fda.cor](https://mlr3fda.mlr-org.com/dev/reference/mlr_pipeops_fda.cor) | Cross-Correlation of Functional Data | [tf](https://cran.r-project.org/package=tf) | fda, data transform | -| [fda.extract](https://mlr3fda.mlr-org.com/dev/reference/mlr_pipeops_fda.extract) | Extracts Simple Features from Functional Columns | [tf](https://cran.r-project.org/package=tf) | fda, data transform | -| [fda.flatten](https://mlr3fda.mlr-org.com/dev/reference/mlr_pipeops_fda.flatten) | Flattens Functional Columns | [tf](https://cran.r-project.org/package=tf) | fda, data transform | -| [fda.fpca](https://mlr3fda.mlr-org.com/dev/reference/mlr_pipeops_fda.fpca) | Functional Principal Component Analysis | [tf](https://cran.r-project.org/package=tf) | fda, data transform | -| [fda.interpol](https://mlr3fda.mlr-org.com/dev/reference/mlr_pipeops_fda.interpol) | Interpolate Functional Columns | [tf](https://cran.r-project.org/package=tf) | fda, data transform | -| [fda.scalerange](https://mlr3fda.mlr-org.com/dev/reference/mlr_pipeops_fda.scalerange) | Linearly Transform the Domain of Functional Data | [tf](https://cran.r-project.org/package=tf) | fda, data transform | -| [fda.smooth](https://mlr3fda.mlr-org.com/dev/reference/mlr_pipeops_fda.smooth) | Smoothing Functional Columns | [tf](https://cran.r-project.org/package=tf), stats | fda, data transform | +| [fda.cor](https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.cor) | Cross-Correlation of Functional Data | [tf](https://cran.r-project.org/package=tf) | fda, data transform | +| [fda.extract](https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.extract) | Extracts Simple Features from Functional Columns | [tf](https://cran.r-project.org/package=tf) | fda, data transform | +| [fda.flatten](https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.flatten) | Flattens Functional Columns | [tf](https://cran.r-project.org/package=tf) | fda, data transform | +| [fda.fpca](https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.fpca) | Functional Principal Component Analysis | [tf](https://cran.r-project.org/package=tf) | fda, data transform | +| [fda.interpol](https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.interpol) | Interpolate Functional Columns | [tf](https://cran.r-project.org/package=tf) | fda, data transform | +| [fda.scalerange](https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.scalerange) | Linearly Transform the Domain of Functional Data | [tf](https://cran.r-project.org/package=tf) | fda, data transform | +| [fda.smooth](https://mlr3fda.mlr-org.com/reference/mlr_pipeops_fda.smooth) | Smoothing Functional Columns | [tf](https://cran.r-project.org/package=tf), stats | fda, data transform | ## Bugs, Questions, Feedback