-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLinDA.R
40 lines (38 loc) · 1.14 KB
/
LinDA.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
#Linear Discriminant Analysis model
#Input:
#Input: covariates
#Response: response vector
#Output:
#yhat: prediction
#sigmaMin1: inverse of covariance matrix
#centroids: centroids matrix
#Pi_k: a priori probs
LinDA<- function(Input,Response){
Input=as.matrix(Input)
N=nrow(Input)
K=length(unique(Response))
classes=as.numeric(levels(as.factor(Response)))
p=ncol(Input)
Mu_k=matrix(0,nrow = p,ncol = K)#centroid vectors
Pi_k=vector(length= K)# a priori probabilities
sigma=matrix(0,ncol=p,nrow = p)#classes covariance matrix
for (i in 1:K){
tmp=Input[Response==classes[i],]
Pi_k[i]=nrow(tmp)/N
Mu_k[,i]=colMeans(tmp)
for(j in 1:nrow(tmp)){
sigma=sigma+(tmp[j,]-Mu_k[,i])%*%t(tmp[j,]-Mu_k[,i])
}
}
sigma=sigma*(1/(N-K))
sigmaMinus1=solve(sigma)
#Classification
deltaTrain=matrix(0,ncol = K,nrow = N)
for (i in 1:K){
deltaTrain[,i]=Input%*%sigmaMinus1%*%Mu_k[,i]
deltaTrain[,i]=deltaTrain[,i]-0.5*t(Mu_k[,i])%*%sigmaMinus1%*%Mu_k[,i]+log(Pi_k[i])
}
#prediction
yHatTrain=apply(deltaTrain,1, which.max)
return(list(yhat=yHatTrain,sigmaMin1=sigmaMinus1,centroids=Mu_k,Pi_k=Pi_k))
}