-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathHF_shape_retrieval.m
71 lines (57 loc) · 2.39 KB
/
HF_shape_retrieval.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
%---------- matching by height functions feature ----------%
addpath common_HF;
clear;
load('norHFs(16) for MPEG7 with max-normal.mat');
load('norHF2s(16) for MPEG7 with max-normal.mat');
%---- file name parameters ----
m=1402;
%---- matching score save ----
Score = zeros(m-2);
%- matching parameters
num_start = 100;
search_step = 1;
thre = 0.0;
TA1 = fix(clock); % start time
for k1 = 1:m-2 % the diagonal also need matching!
f1 = norHFs{k1};
for k2 = 1:m-2 % matching the two shapes with their feature by DP
f2 = norHFs{k2};
f3 = norHF2s{k2};
%tmp = fliplr(flipud(SSHRs{k2}));
%f3 = [sum(tmp(scales1, :)); sum(tmp(scales2, :)); sum(tmp(scales3, :))];
%-- compute the cost matrix b/w points in feature1 and feature2.
[costmat1] = weighted0_tar_cost(f1, f2);
[costmat2] = weighted0_tar_cost(f1, f3);
%-- MATCHING
%- in current order
[cvec1, match_cost1] = mixDPMatching_C(costmat1, thre, num_start, search_step);
%- in reverse order
[cvec2, match_cost2] = mixDPMatching_C(costmat2, thre, num_start, search_step);
%- get the best result
Score(k1, k2) = min(match_cost1, match_cost2);
end
fprintf('Process line %i end \n', k1);
end
TA2 = fix(clock); % end time
%---- save matching score
save('weighted0-tar distance (16) th=0.0 norHFs 1400Score.mat', 'Score'); % Score
%load('Score.mat');
%---- compute matching accuracy
%FullScore = Score + Score';
[sorted, index] = sort(Score); % by column, sort(Score, 1)
%-- judge the first 40 rows of 'index', whether the place is in proper range, and count number
n_class = (m-2)/20; % how many classes of objects in DB
n_obj = 20; % how many objects in every class
hit_num = zeros(1, n_class); % how many objects found in matching for every class
for i = 1 : n_class
index_min = 1 + n_obj * (i - 1); % the two indices denote both the column range for every class
index_max = n_obj * i; % and the proper index range
hit_num(i) = length(find(index(1 : 40, index_min : index_max) >= index_min & index(1 : 40, index_min : index_max) <= index_max));
end
%-- statis, VC+DP 66%
Accu_class = hit_num / (n_obj * n_obj);
Accu = sum(hit_num) / (n_obj * n_obj * n_class);
figure(1);
bar(Accu_class);
title(strcat('Accu = ', num2str(Accu)));
return;