-
Notifications
You must be signed in to change notification settings - Fork 197
/
Copy pathextract_support_text_mapper.py
140 lines (122 loc) · 6.47 KB
/
extract_support_text_mapper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
from typing import Dict, Optional
from loguru import logger
from pydantic import PositiveInt
from data_juicer.ops.base_op import OPERATORS, TAGGING_OPS, Mapper
from data_juicer.utils.constant import Fields, MetaKeys
from data_juicer.utils.model_utils import get_model, prepare_model
OP_NAME = 'extract_support_text_mapper'
# TODO: LLM-based inference.
@TAGGING_OPS.register_module(OP_NAME)
@OPERATORS.register_module(OP_NAME)
class ExtractSupportTextMapper(Mapper):
"""
Extract support sub text for a summary.
"""
DEFAULT_SYSTEM_PROMPT = ('你将扮演一个文本摘录助手的角色。你的主要任务是基于给定'
'的文章(称为“原文”)以及对原文某个部分的简短描述或总结'
'(称为“总结”),准确地识别并提取出与该总结相对应的原文'
'片段。\n'
'要求:\n'
'- 你需要尽可能精确地匹配到最符合总结内容的那部分内容\n'
'- 如果存在多个可能的答案,请选择最贴近总结意思的那个\n'
'- 下面是一个例子帮助理解这一过程:\n'
'### 原文:\n'
'《红楼梦》是中国古典小说四大名著之一,由清代作家曹雪芹创'
'作。它讲述了贾宝玉、林黛玉等人的爱情故事及四大家族的兴衰'
'历程。书中通过复杂的人物关系展现了封建社会的各种矛盾冲突'
'。其中关于贾府内部斗争的部分尤其精彩,特别是王熙凤与尤二'
'姐之间的争斗,生动描绘了权力争夺下的女性形象。此外,《红'
'楼梦》还以其精美的诗词闻名,这些诗词不仅增添了文学色彩,'
'也深刻反映了人物的性格特点和命运走向。\n\n'
'### 总结:\n'
'描述了书中的两个女性角色之间围绕权力展开的竞争。\n\n'
'### 原文摘录:\n'
'其中关于贾府内部斗争的部分尤其精彩,特别是王熙凤与尤二姐'
'之间的争斗,生动描绘了权力争夺下的女性形象。')
DEFAULT_INPUT_TEMPLATE = ('### 原文:\n{text}\n\n'
'### 总结:\n{summary}\n\n'
'### 原文摘录:\n')
def __init__(self,
api_model: str = 'gpt-4o',
*,
summary_key: str = MetaKeys.event_description,
support_text_key: str = MetaKeys.support_text,
api_endpoint: Optional[str] = None,
response_path: Optional[str] = None,
system_prompt: Optional[str] = None,
input_template: Optional[str] = None,
try_num: PositiveInt = 3,
drop_text: bool = False,
model_params: Dict = {},
sampling_params: Dict = {},
**kwargs):
"""
Initialization method.
:param api_model: API model name.
:param summary_key: The key name to store the input summary in the
meta field. It's "event_description" in default.
:param support_text_key: The key name to store the output
support text for the summary in the meta field. It's
"support_text" in default.
:param api_endpoint: URL endpoint for the API.
:param response_path: Path to extract content from the API response.
Defaults to 'choices.0.message.content'.
:param system_prompt: System prompt for the task.
:param input_template: Template for building the model input.
:param try_num: The number of retry attempts when there is an API
call error or output parsing error.
:param drop_text: If drop the text in the output.
:param model_params: Parameters for initializing the API model.
:param sampling_params: Extra parameters passed to the API call.
e.g {'temperature': 0.9, 'top_p': 0.95}
:param kwargs: Extra keyword arguments.
"""
super().__init__(**kwargs)
self.summary_key = summary_key
self.support_text_key = support_text_key
self.system_prompt = system_prompt or self.DEFAULT_SYSTEM_PROMPT
self.input_template = input_template or self.DEFAULT_INPUT_TEMPLATE
self.sampling_params = sampling_params
self.model_key = prepare_model(model_type='api',
model=api_model,
endpoint=api_endpoint,
response_path=response_path,
**model_params)
self.try_num = try_num
self.drop_text = drop_text
def process_single(self, sample, rank=None):
# check if it's generated already
if self.support_text_key in sample[Fields.meta]:
return sample
client = get_model(self.model_key, rank=rank)
if self.summary_key not in sample[Fields.meta]:
logger.warning(
f'{self.summary_key} does not exist in the meta field!')
return sample
summary = sample[Fields.meta][self.summary_key]
if not isinstance(summary, str):
logger.warning('Unvalid input summary!')
return sample
input_prompt = self.input_template.format(text=sample[self.text_key],
summary=summary)
messages = [{
'role': 'system',
'content': self.system_prompt
}, {
'role': 'user',
'content': input_prompt
}]
support_text = ''
for i in range(self.try_num):
try:
response = client(messages, **self.sampling_params)
support_text = response.strip()
if len(support_text) > 0:
break
except Exception as e:
logger.warning(f'Exception: {e}')
# default to summary if return None
if not support_text:
support_text = summary
sample[Fields.meta][self.support_text_key] = support_text
return sample