-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathclassification-1.py
335 lines (238 loc) · 9.23 KB
/
classification-1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
from __future__ import print_function, division
import pprint
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
import torch.backends.cudnn as cudnn
import torchvision
from torchvision import datasets, models, transforms
from torch.utils.data import Dataset, DataLoader
from torchvision import datasets, models, transforms
import time
import os
from PIL import Image
import numpy as np
import pandas as pd
cudnn.benchmark = True
def collate_fn(batch):
return [
torch.stack([x[0] for x in batch]),
torch.tensor(np.array([x[1] for x in batch])),
]
# data_dir = "/mnt/g/onlinelessons/deep learning/dataset/train_full_malware/ByteToImage/on_board/"
data_dir = "/mnt/project/dataset/on_board/"
class image_custom_dataset(Dataset):
"""Face Landmarks dataset."""
def __init__(self, csv_file, transform=None):
"""
Arguments:
csv_file (string): Path to the csv file with labels.
root_dir (string): Directory with all the images.
transform (callable, optional): Optional transform to be applied
on a sample.
"""
self.image_csv = pd.read_csv(csv_file)
self.transform = transforms.Compose(
[
transforms.Resize(256),
transforms.ToTensor(),
]
)
def __len__(self):
return len(self.image_csv)
def __getitem__(self, idx):
if torch.is_tensor(idx):
idx = idx.tolist()
image_name = self.image_csv.iloc[idx, 1]
image = Image.open(image_name)
label = self.image_csv.iloc[idx, 3:12]
label = np.array(label, dtype=np.float16)
if self.transform:
image = self.transform(image)
if image.shape[0] == 1:
image = torch.cat((image, image, image), dim=0)
image = transforms.Compose(
[
transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
)
]
)(image)
return_tuple = tuple([image, label])
return return_tuple
# test_dir = "/mnt/g/onlinelessons/deep learning/dataset/train_full_malware/ByteToImage/on_board/test"
test_dir = "/mnt/project/dataset/on_board/test"
image_datasets = {
x.split("_")[0]: image_custom_dataset(os.path.join(data_dir, x))
for x in ["test_data_encoded - Copy.csv"]
}
batch_size = 4
dataloaders = {
"test": torch.utils.data.DataLoader(
image_datasets["test"],
batch_size=batch_size,
shuffle=True,
num_workers=4,
collate_fn=collate_fn,
)
}
dataset_sizes = {x: len(image_datasets[x]) for x in ["test"]}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(dataset_sizes["test"])
len(dataloaders["test"])
image_datasets = {
x.split("_")[0]: image_custom_dataset(os.path.join(data_dir, x))
for x in ["test_data_encoded - Copy.csv"]
}
batch_size = 4
dataloaders = {
"test": torch.utils.data.DataLoader(
image_datasets["test"],
batch_size=batch_size,
shuffle=True,
num_workers=4,
collate_fn=collate_fn,
)
}
dataset_sizes = {x: len(image_datasets[x]) for x in ["test"]}
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(dataset_sizes["test"])
len(dataloaders["test"])
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
print(torch.cuda.is_available())
def pipeline_module(model_list, confidence_factor=0.8):
print(f"Confidence factor: {confidence_factor}")
was_training = []
for models in model_list:
was_training.append(models.training)
models.eval()
model = model_list[0]
pred_in_each_step = [0, 0, 0, 0]
total_run_time = 0
total = 0
model = model.to(device)
with torch.no_grad():
since = time.time()
for i, (inputs, _) in enumerate(dataloaders["test"]):
inputs = inputs.to(device)
outputs = model(inputs)
preds = outputs
_, predicted_labels = torch.max(preds, dim=1)
predicted_labels = predicted_labels.clone().detach()
for j, batch in enumerate(preds):
if float(batch[int(predicted_labels[j])]) < confidence_factor:
stronger_model = model_list[1]
stronger_model = stronger_model.to(device)
strong_inputs = inputs[j]
strong_inputs = strong_inputs.unsqueeze(0)
strong_outputs = stronger_model(strong_inputs)
strong_preds = strong_outputs
_, strong_labels = torch.tensor(torch.max(strong_preds, dim=1))
if float(strong_preds[0][int(strong_labels)]) < confidence_factor:
stronger_model = model_list[2]
stronger_model = stronger_model.to(device)
strong_outputs = stronger_model(strong_inputs)
strong_preds = strong_outputs
_, strong_labels = torch.tensor(torch.max(strong_preds, dim=1))
predicted_labels[j] = strong_labels
pred_in_each_step[2] += 1
else:
predicted_labels[j] = strong_labels
pred_in_each_step[1] += 1
else:
pred_in_each_step[0] += 1
total = total + inputs.size(0)
time_elapsed = time.time() - since
for i, train_mode in enumerate(was_training):
model_list[i].train(mode=train_mode)
for k, steps_power in enumerate(pred_in_each_step):
print(
"\033[36m"
+ f"{pred_in_each_step[k]} predicted in {k}th layer"
+ "\033[0m"
)
print(f"datas handled by each layer = {pred_in_each_step}")
print("\033[33m" + f"run-time(overall) = {time_elapsed}" + "\033[0m")
print(
"\033[34m"
+ f"run-time(per input in second) = {time_elapsed / total}"
+ "\033[0m"
)
return {
"run-time": time_elapsed,
}
import torch.nn.functional as F
class FireModule(nn.Module):
def __init__(self, in_channels, s1x1, e1x1, e3x3):
super(FireModule, self).__init__()
self.squeeze = nn.Conv2d(in_channels, s1x1, kernel_size=1)
self.expand_1x1 = nn.Conv2d(s1x1, e1x1, kernel_size=1)
self.expand_3x3 = nn.Conv2d(s1x1, e3x3, kernel_size=3, padding=1)
def forward(self, x):
x = F.relu(self.squeeze(x))
return torch.cat(
[F.relu(self.expand_1x1(x)), F.relu(self.expand_3x3(x))], dim=1
)
class SqueezeNet(nn.Module):
def __init__(self, num_classes=9):
super(SqueezeNet, self).__init__()
self.num_classes = 9
self.features = nn.Sequential(
nn.Conv2d(3, 96, kernel_size=11, stride=2),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=3, stride=2, ceil_mode=True),
FireModule(96, 64, 128, 128),
)
self.classifier = nn.Sequential(
nn.Dropout(p=0.5),
nn.Conv2d(256, self.num_classes, kernel_size=3),
nn.ReLU(inplace=True),
nn.AdaptiveAvgPool2d((1, 1)),
)
def forward(self, x):
x = self.features(x)
x = self.classifier(x)
return x.view(-1, self.num_classes)
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
model1 = SqueezeNet()
model1 = model1.to(device)
class Linear_layers_fc(torch.nn.Module):
def __init__(self):
super(Linear_layers_fc, self).__init__()
self.linear2 = torch.nn.Linear(1280, 9)
self.dropout2 = nn.Dropout(p=0.2)
self.softmax = torch.nn.Softmax(dim=1)
def forward(self, x):
x = self.dropout2(x)
x = self.linear2(x)
x = self.softmax(x)
return x
linear_layers_mobilenet = Linear_layers_fc()
print("The model:")
print(linear_layers_mobilenet)
model3 = torch.hub.load("pytorch/vision:v0.10.0", "mobilenet_v2", pretrained=True)
num_classes = 9
model3.classifier = linear_layers_mobilenet
model3 = model3.to(device)
os.environ["CUDA_LAUNCH_BLOCKING"] = "1"
class_num = 9
model4 = models.resnet18(pretrained=True)
num_ftrs = model4.fc.in_features
model4.fc = nn.Linear(num_ftrs, class_num)
model4 = model4.to(device)
model4
model_1_dir = "./squeeznet_combined_best_256_better.pth"
model_3_dir = "./mobilenet_v2_9_finetuned_combined_256.pth"
model_4_dir = "./resnet18_finetuned-smote-256_new_better2.pth"
model1.load_state_dict(torch.load(model_1_dir))
model1 = nn.Sequential(model1, nn.Softmax())
model3.load_state_dict(torch.load(model_3_dir))
model4.load_state_dict(torch.load(model_4_dir))
models_list = []
models_list.append(model1)
models_list.append(model3)
models_list.append(model4)
conf_list = [0.97]
for i in range(1):
results = pipeline_module(models_list, confidence_factor=conf_list[i])