-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaverage_windowsize.py
95 lines (73 loc) · 4.91 KB
/
average_windowsize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
import numpy as np
import pandas as pd
import os
import matplotlib.pyplot as plt
from converdfSetAxisgetNumpyArray import readASdfsetaxisAmpasnp
def calculate_avg_wndsize(data_path,sameNo_of_amp_phase_length,amp_inOrder,Phase_inOrder,point_density_OLd,avg_windowsize):
"""
this function to calculate the average size window for all the same type of file at once.
Data taken using the same setting then employing this function,
we can get a accurate average window size, which is suitable for identifyig the downbump,inflexion and start of the flat region (zero_orFlatAmp) in data.
"""
file_No = 0
all_value_amp_piezo = []
for i in range(sameNo_of_amp_phase_length):
filenameAmplitude = amp_inOrder[i]
filenamephase = Phase_inOrder[i]
file_No = i+1
print("\n",f"<----- IN process with files {filenameAmplitude} and {filenamephase} and file No. {file_No} -------->")
print("\n",f"I am dealing with file = {file_No}.")
# readASdfsetaxisAmpasnp(data_path,filenameAmplitude,filenamephase)
print(f"I have read and converted the data in dataframe and numpy array and no of row in amp as data_endamp for file {i+1} named as {filenameAmplitude} and {filenamephase}.")
res = readASdfsetaxisAmpasnp(data_path,filenameAmplitude,filenamephase)
ampdf = res[0] # ampdf is two column dataframe with title: ['Piezo','Amplitude']
phasedf = res[1] # phasedf is two column dataframe with title: ['Piezo','Phase']
data_endamp = res[2] # total length of ampdf, index of the last value is --> data_endamp-1
ampdfPiezoColumnarr = res[3] # it is single column Piezo numpy array only
ampdfAmplitudeColumnarr = res[4] # it is single column amplitude numpy array only
A0 = res[5] # A0 is the last value of the ampdf Amplitude
ampdfPiezoColumnarr = ampdfPiezoColumnarr[0:]
all_value_amp_piezo.extend(ampdfPiezoColumnarr)
# all_value_amp_piezo # list, this has whole piezo data values.
all_value_amp_piezo_array = np.array(all_value_amp_piezo) # now numpy array
total_elements_IN_arrayof_allfiles = all_value_amp_piezo_array.shape[0]
piezo_array_range = np.max(all_value_amp_piezo_array) - np.min(all_value_amp_piezo_array)
# piezo_array_range
no_of_points_IN_onedatafile = (all_value_amp_piezo_array.shape[0])/(file_No)
print(f"piezo array range:{piezo_array_range}, no_of_points_IN_onedatafile:{no_of_points_IN_onedatafile} and file_no.:{file_No}")
# point_density_OLd = no_of_points_IN_onedatafile/piezo_array_range
point_density_Current = no_of_points_IN_onedatafile/piezo_array_range
if point_density_Current > point_density_OLd:
scalar_factor_avgwndsize = point_density_Current/point_density_OLd
avg_window_current = avg_windowsize*scalar_factor_avgwndsize
avg_window_current = int(avg_window_current)
else:
scalar_factor_avgwndsize = point_density_OLd/point_density_Current
avg_window_current = avg_windowsize/scalar_factor_avgwndsize
avg_window_current = int(avg_window_current)
return avg_window_current
# 8910.417881801475
def calculate_avg_wndsize_Individual_filewise(ampdfPiezoColumnarr,file_No,point_density_OLd,avg_windowsize):
"""
this function to calculate the average size window for each file individually.
Data taken using the same setting then employing this function,
we can get a accurate average window size, which is suitable for identifyig the downbump,inflexion and start of the flat region (zero_orFlatAmp) in data.
"""
all_value_amp_piezo_array = ampdfPiezoColumnarr[0:] # all_value_amp_piezo # list, this has whole piezo data values.
# all_value_amp_piezo_array = np.array(all_value_amp_p iezo) # now numpy array
total_elements_IN_arrayof_allfiles = all_value_amp_piezo_array.shape[0]
piezo_array_range = np.max(all_value_amp_piezo_array) - np.min(all_value_amp_piezo_array)
# piezo_array_range
no_of_points_IN_onedatafile = (all_value_amp_piezo_array.shape[0])
print(f"piezo array range:{piezo_array_range}, no_of_points_IN_onedatafile:{no_of_points_IN_onedatafile} and individual file file_no.:{file_No}")
# point_density_OLd = no_of_points_IN_onedatafile/piezo_array_range
point_density_Current = no_of_points_IN_onedatafile/piezo_array_range
if point_density_Current > point_density_OLd:
scalar_factor_avgwndsize = point_density_Current/point_density_OLd
avg_window_current = avg_windowsize*scalar_factor_avgwndsize
avg_window_current = int(avg_window_current)
else:
scalar_factor_avgwndsize = point_density_OLd/point_density_Current
avg_window_current = avg_windowsize/scalar_factor_avgwndsize
avg_window_current = int(avg_window_current)
return avg_window_current