-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathinitialization.c
258 lines (257 loc) · 11.4 KB
/
initialization.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
/****************************************************************************
* ArtraCFD *
* <By Huangrui Mo> *
* Copyright (C) Huangrui Mo <huangrui.mo@gmail.com> *
* This file is part of ArtraCFD. *
* ArtraCFD is free software: you can redistribute it and/or modify it *
* under the terms of the GNU General Public License as published by *
* the Free Software Foundation, either version 3 of the License, or *
* (at your option) any later version. *
****************************************************************************/
/****************************************************************************
* Required Header Files
****************************************************************************/
#include "initialization.h"
#include <stdio.h> /* standard library for input and output */
#include <string.h> /* manipulating strings */
#include "calculator.h"
#include "computational_geometry.h"
#include "immersed_boundary.h"
#include "boundary_treatment.h"
#include "data_stream.h"
#include "stl.h"
#include "cfd_commons.h"
#include "commons.h"
/****************************************************************************
* Static Function Declarations
****************************************************************************/
static void InitializeSpaceData(Space *, const Model *);
static void InitializeFieldData(Space *, const Model *);
static void ApplyInitializer(const int, const Real [restrict],
Real [restrict], const Partition *const, const Model *);
static void InitializeGeometryData(Geometry *const);
static void WritePolyMassProperty(const Geometry *const);
static void IdentifyGeometryState(Geometry *const);
/****************************************************************************
* Function definitions
****************************************************************************/
void InitializeComputeDomain(Time *time, Space *space, const Model *model)
{
if (0 == time->restart) { /* non restart */
InitializeSpaceData(space, model);
} else {
ReadData(PROSD, time, space, model);
}
ComputeGeometryParameters(space->part.collapse, &(space->geo));
WritePolyMassProperty(&(space->geo));
ComputeGeometricField(space, model);
TreatBoundary(TO, space, model);
IdentifyGeometryState(&(space->geo));
if (0 == time->restart) { /* non restart */
WriteData(PROPT, time, space, model);
WriteData(PROFC, time, space, model);
WriteData(PROSD, time, space, model);
}
return;
}
static void InitializeSpaceData(Space *space, const Model *model)
{
InitializeFieldData(space, model);
InitializeGeometryData(&(space->geo));
return;
}
/*
* Initialize quantities for the entire domain
* Exterior domains are initialized to unphysical values to avoid hiding
* mistakes in boundary treatment and producing floating point exceptions.
*/
static void InitializeFieldData(Space *space, const Model *model)
{
const Partition *const part = &(space->part);
Node *const node = space->node;
RealVec pc = {0.0}; /* coordinates of current node */
int idx = 0; /* linear array index math variable */
for (int k = part->ns[PAL][Z][MIN]; k < part->ns[PAL][Z][MAX]; ++k) {
for (int j = part->ns[PAL][Y][MIN]; j < part->ns[PAL][Y][MAX]; ++j) {
for (int i = part->ns[PAL][X][MIN]; i < part->ns[PAL][X][MAX]; ++i) {
idx = IndexNode(k, j, i, part->n[Y], part->n[X]);
node[idx].did = NONE;
node[idx].fid = NONE;
node[idx].lid = NONE;
node[idx].gst = NONE;
memset(node[idx].U, 1, DIMT * sizeof(*node[idx].U));
if (!InPartBox(k, j, i, part->ns[PIN])) {
continue;
}
/* geometric field initializer */
node[idx].did = 0;
node[idx].fid = 0;
node[idx].lid = 0;
node[idx].gst = 0;
/* data field initializer */
pc[X] = MapPoint(i, part->domain[X][MIN], part->d[X], part->ng[X]);
pc[Y] = MapPoint(j, part->domain[Y][MIN], part->d[Y], part->ng[Y]);
pc[Z] = MapPoint(k, part->domain[Z][MIN], part->d[Z], part->ng[Z]);
for (int n = 0; n < part->nIC; ++n) {
ApplyInitializer(n, pc, node[idx].U[TO], part, model);
}
}
}
}
return;
}
static void ApplyInitializer(const int n, const Real pc[restrict], Real U[restrict],
const Partition *const part, const Model *model)
{
const Real zero = 0.0;
const RealVec p1 = {part->posIC[n][0], part->posIC[n][1], part->posIC[n][2]};
const RealVec p2 = {part->posIC[n][3], part->posIC[n][4], part->posIC[n][5]};
const Real r = part->posIC[n][6];
CalcVar var = {.t = zero, .x = pc[X], .y = pc[Y], .z = pc[Z], .ans = zero, .pi = PI};
const Real Uo[DIMUo] = {
ComputeExpression(&var, part->varIC[n][0]),
ComputeExpression(&var, part->varIC[n][1]),
ComputeExpression(&var, part->varIC[n][2]),
ComputeExpression(&var, part->varIC[n][3]),
ComputeExpression(&var, part->varIC[n][4])};
const RealVec P1P2 = {p2[X] - p1[X], p2[Y] - p1[Y], p2[Z] - p1[Z]};
const Real l2_P1P2 = Dot(P1P2, P1P2);
RealVec P1Pc = {pc[X] - p1[X], pc[Y] - p1[Y], pc[Z] - p1[Z]};
Real proj = zero; /* projection length */
/* apply initial values for nodes that meets condition */
int flag = 0; /* control flag for whether current node in the region */
switch (part->typeIC[n]) {
case ICGLOBAL:
flag = 1;
break;
case ICPLANE:
if (zero <= Dot(P1Pc, p2)) { /* on the normal direction or the plane */
flag = 1;
}
break;
case ICSPHERE:
if (r * r >= Dot(P1Pc, P1Pc)) { /* in or on the sphere */
flag = 1;
}
break;
case ICBOX:
P1Pc[X] = P1Pc[X] * (pc[X] - p2[X]);
P1Pc[Y] = P1Pc[Y] * (pc[Y] - p2[Y]);
P1Pc[Z] = P1Pc[Z] * (pc[Z] - p2[Z]);
if ((zero >= P1Pc[X]) && (zero >= P1Pc[Y]) && (zero >= P1Pc[Z])) { /* in or on the box */
flag = 1;
}
break;
case ICCYLINDER:
proj = Dot(P1Pc, P1P2);
if ((zero > proj) || (l2_P1P2 < proj)) { /* outside the two ends */
break;
}
proj = Dot(P1Pc, P1Pc) - proj * proj / l2_P1P2;
if (r * r >= proj) { /* in or on the cylinder */
flag = 1;
}
break;
default:
break;
}
if (1 == flag) { /* current node meets the condition */
MapConservative(model->gamma, Uo, U);
}
return;
}
static void InitializeGeometryData(Geometry *const geo)
{
FILE *fp = Fopen("artracfd.geo", "r");
const char *fmtI = ParseFormat("%lg, %lg, %lg, %lg, %lg, %lg, %lg, %lg, %lg");
/* read and process file line by line */
String str = {'\0'}; /* store the current read line */
String fname = {'\0'}; /* store the file name */
while (NULL != fgets(str, sizeof str, fp)) {
ParseCommand(str);
if (0 == strncmp(str, "sphere state begin", sizeof str)) {
ReadPolyStateData(0, geo->sphN, fp, geo);
continue;
}
if (0 == strncmp(str, "polyhedron geometry begin", sizeof str)) {
for (int n = geo->sphN; n < geo->totN; ++n) {
Sread(fp, 1, "%s", fname);
ReadStlFile(fname, geo->poly + n);
ConvertPolyhedron(geo->poly + n);
}
continue;
}
if (0 == strncmp(str, "polyhedron state begin", sizeof str)) {
ReadPolyStateData(geo->sphN, geo->totN, fp, geo);
continue;
}
if (0 == strncmp(str, "polyhedron transform begin", sizeof str)) {
const Real one = 1.0;
const Real zero = 0.0;
RealVec scale = {zero};
RealVec angle = {zero};
RealVec offset = {zero};
for (int n = geo->sphN; n < geo->totN; ++n) {
Sread(fp, 9, fmtI, scale + X, scale + Y, scale + Z,
angle + X, angle + Y, angle + Z, offset + X, offset + Y, offset + Z);
if ((one == scale[X]) && (one == scale[Y]) && (one == scale[Z]) &&
(zero == angle[X]) && (zero == angle[Y]) && (zero == angle[Z]) &&
(zero == offset[X]) && (zero == offset[Y]) && (zero == offset[Z])) {
continue;
}
TransformPolyhedron(geo->poly[n].O, scale, angle, offset, geo->poly + n);
}
continue;
}
}
fclose(fp);
return;
}
static void WritePolyMassProperty(const Geometry *const geo)
{
FILE *fp = Fopen("geo_mass_property.csv", "w");
const char *fmtI = " %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g, %.6g\n";
fprintf(fp, "#------------------------------------------------------------------------------\n");
fprintf(fp, "# -\n");
fprintf(fp, "# Polyhedron Mass Property -\n");
fprintf(fp, "# -\n");
fprintf(fp, "# O[X,Y,Z], I[XX,YY,ZZ,XY,YZ,ZX], Box[X,Y,Z][MIN,MAX], rho, area, volume -\n");
fprintf(fp, "#------------------------------------------------------------------------------\n");
const Polyhedron *poly = NULL;
for (int n = geo->sphN; n < geo->totN; ++n) {
poly = geo->poly + n;
fprintf(fp, fmtI,
poly->O[X], poly->O[Y], poly->O[Z],
poly->I[X][X], poly->I[Y][Y], poly->I[Z][Z],
poly->I[X][Y], poly->I[Y][Z], poly->I[Z][X],
poly->box[X][MIN], poly->box[Y][MIN], poly->box[Z][MIN],
poly->box[X][MAX], poly->box[Y][MAX], poly->box[Z][MAX],
poly->rho, poly->area, poly->volume);
}
fprintf(fp, "#------------------------------------------------------------------------------\n");
fclose(fp);
return;
}
static void IdentifyGeometryState(Geometry *const geo)
{
Polyhedron *poly = NULL;
const Real zero = 0.0;
const Real rhoNoForce = 1.0e10;
const Real rhoNoMove = 1.0e36;
for (int n = 0; n < geo->totN; ++n) {
poly = geo->poly + n;
if (rhoNoForce < poly->rho) { /* ignore surface force integration */
poly->state = 2;
if ((zero == poly->V[TO][X]) && (zero == poly->V[TO][Y]) && (zero == poly->V[TO][Z]) &&
(zero == poly->W[TO][X]) && (zero == poly->W[TO][Y]) && (zero == poly->W[TO][Z]) &&
(zero == poly->at[TN][X]) && (zero == poly->at[TN][Y]) && (zero == poly->at[TN][Z]) &&
(zero == poly->g[X]) && (zero == poly->g[Y]) && (zero == poly->g[Z]) &&
(zero == poly->ar[TN][X]) && (zero == poly->ar[TN][Y]) && (zero == poly->ar[TN][Z]) &&
(rhoNoMove < poly->rho)) { /* stationary geometry */
poly->state = 1;
}
}
}
return;
}
/* a good practice: end file with a newline */