-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_utils.py
254 lines (201 loc) · 9.61 KB
/
train_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import torch
import os
from dataset.data_loaders import *
import torch.nn as nn
import torch.optim as optim
from torch.optim.lr_scheduler import StepLR, ReduceLROnPlateau
from tqdm import tqdm
from config import DEVICE
def train_step(model, train_loader, criterion, optimizer, epoch, verbose=True):
"""
Train the model for one epoch
Args:
- model: the model to train
- train_loader: the data loader for the training data
- criterion: the loss function
- optimizer: the optimizer
- epoch: the current epoch
Returns:
- None
"""
# Set the model to train mode
model.train()
train_loss = 0
num_batches = len(train_loader)
# Loop over the data in the train loader
for batch_idx, (s1, s2, crop_map) in enumerate(train_loader):
# Move the data to the device
s1, s2, crop_map = s1.to(DEVICE), s2.to(DEVICE), crop_map.to(DEVICE)
# print(f"s1.shape: {s1.shape}", f"s2.shape: {s2.shape}", f"crop_map.shape: {crop_map.shape}")
# Zero the gradients
optimizer.zero_grad()
# Forward pass
outputs = model(s1, s2)
# Calculate the loss
loss = criterion(outputs, crop_map)
train_loss += loss.item()
# Backward pass
loss.backward()
# Update the weights
optimizer.step()
if verbose:
# Print the loss
print(f'Train Epoch: {epoch} [{batch_idx * len(s1)}/{len(train_loader.dataset)} '
f'({100. * batch_idx / len(train_loader):.0f}%)]\tLoss: {loss.item():.6f}')
train_loss /= num_batches
return train_loss
def valid_step(model, valid_loader, criterion):
"""
Evaluate the model on the validation set
Args:
- model: the model to evaluate
- valid_loader: the data loader for the validation data
- criterion: the loss function
Returns:
- val_loss: the average validation loss
"""
# Set the model to evaluation mode
model.eval()
# Initialize the loss and number of samples
val_loss = 0.0
num_batches = len(valid_loader)
# Disable gradient computation
with torch.no_grad():
# Loop over the data in the validation loader
for s1, s2, crop_map in valid_loader:
# Move the data to the device
s1, s2, crop_map = s1.to(DEVICE), s2.to(DEVICE), crop_map.to(DEVICE)
# Forward pass
outputs = model(s1, s2)
# Calculate the loss
loss = criterion(outputs, crop_map)
# Update the loss and number of samples
val_loss += loss.item()
# Calculate the average validation loss
val_loss /= num_batches
return val_loss
def train(model, train_loader, valid_loader, criterion, optimizer, scheduler_type, num_epochs, **kwargs):
"""
Train the model with a learning rate scheduler
Args:
- model: the model to train
- train_loader: the data loader for the training data
- valid_loader: the data loader for the validation data
- criterion: the loss function
- optimizer: the optimizer
- scheduler_type: the type of learning rate scheduler ("constant", "step", "plateau")
- num_epochs: the number of epochs to train for
Returns:
- results: a dictionary containing training and validation loss histories
"""
results = {
"train_loss_history": [],
"val_loss_history": []
}
progress_bar = tqdm(range(num_epochs), desc="Training", unit="epoch")
if scheduler_type == "step":
step_size = kwargs["step_size"]
gamma = kwargs["gamma"]
scheduler = StepLR(optimizer, step_size=step_size, gamma=gamma)
elif scheduler_type == "plateau":
factor = kwargs["factor"]
patience = kwargs["patience"]
scheduler = ReduceLROnPlateau(optimizer, mode='min', factor=factor, patience=patience, verbose=True)
else:
scheduler = None
for epoch in progress_bar:
train_loss = train_step(model, train_loader, criterion, optimizer, epoch + 1, verbose=False)
val_loss = valid_step(model, valid_loader, criterion)
results["train_loss_history"].append(train_loss)
results["val_loss_history"].append(val_loss)
progress_bar.set_postfix({"Epoch": epoch + 1, "Train Loss": train_loss, "Validation Loss": val_loss})
# Step the learning rate scheduler
if scheduler == "step":
scheduler.step()
elif scheduler == "plateau":
scheduler.step(val_loss)
else:
pass
return results
def binary_mask_accuracy(predicted, true, threshold=0.3, channel=0):
""" Calculates the metrics, for a single image, given the predicted and true binary masks.
Parameters:
- predicted: torch.Tensor with shape (num_channels, height, width)
- true: torch.Tensor with shape (num_channels, height, width)
- threshold: float, the threshold to apply to the predicted mask
- channel: int, the channel to select from the predicted and true mask (default: 0, useful for multiclass masks)
Returns:
- acc_dict: dict, a dictionary with the accuracy, true positive rate (recall), true negative rate, precision and f1 score
"""
predicted = predicted[channel, :, :] # select the channel
true = true[channel, :, :] # select the channel
predicted = predicted > threshold # apply a threshold to the predicted mask
true_positive = ((predicted == 1) & (true == 1)).sum().item() # count the number of true positives
true_negative = ((predicted == 0) & (true == 0)).sum().item() # count the number of true negatives
false_positive = ((predicted == 1) & (true == 0)).sum().item() # count the number of false positives
false_negative = ((predicted == 0) & (true == 1)).sum().item() # count the number of false negatives
accuracy = (true_positive + true_negative) / (true_positive + true_negative + false_positive + false_negative) # calculate the accuracy
recall = true_positive / (true_positive + false_negative) if (true_positive + false_negative) > 0 else 0 # calculate the recall
true_negative_rate = true_negative / (true_negative + false_positive) if (true_negative + false_positive) > 0 else 0 # calculate the true negative rate
precision = true_positive / (true_positive + false_positive) if (true_positive + false_positive) > 0 else 0 # calculate the precision
f1_score = 2 * precision * recall / (precision + recall) if (precision + recall) > 0 else 0 # calculate the f1 score
acc_dict = {"accuracy": accuracy,
"recall (true_positive_rate)": recall,
"true_negative_rate": true_negative_rate,
"precision": precision,
"f1_score": f1_score}
return acc_dict
def calculate_dataset_metrics(data_loaders, model, threshold=0.4, channel= 0):
"""
Calculates various metrics for a given dataset using a trained model.
Parameters:
- data_loaders (dict): A dictionary containing the data loaders for different datasets.
- model: The trained model to evaluate.
- threshold (float): The threshold value for binarizing the model's output.
- channel (int): The channel index to consider for evaluation.
Returns:
- metrics (dict): A dictionary containing the calculated metrics for each dataset.
The metrics include accuracy, true positive rate, true negative rate, precision, recall, and F1 score.
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
metrics = {}
with torch.no_grad():
for name, loader in data_loaders.items():
correct = 0
total = 0
true_positive = 0
true_negative = 0
false_positive = 0
false_negative = 0
for k, batch in enumerate(loader):
print(f"Batch {k + 1} / {len(loader)}", end="\r")
s1_img = batch[0].to(device)
s2_img = batch[1].to(device)
crop_map = batch[2].to(device)
output = model(s1_img, s2_img)
crop_map = crop_map[:, channel, :, :].cpu().detach()
output = output[:, channel, :, :].cpu().detach()
output[output >= threshold] = 1
output[output < threshold] = 0
correct += (output == crop_map).sum().item()
total += crop_map.numel()
true_positive += ((output == 1) & (crop_map == 1)).sum().item()
true_negative += ((output == 0) & (crop_map == 0)).sum().item()
false_positive += ((output == 1) & (crop_map == 0)).sum().item()
false_negative += ((output == 0) & (crop_map == 1)).sum().item()
accuracy = (correct / total) if total > 0 else 0
recall = (true_positive / (true_positive + false_negative)) if (true_positive + false_negative) > 0 else 0
true_negative_rate = (true_negative / (true_negative + false_positive)) if (true_negative + false_positive) > 0 else 0
precision = (true_positive / (true_positive + false_positive)) if (true_positive + false_positive) > 0 else 0
f1_score = (2 * precision * recall / (precision + recall)) if (precision + recall) > 0 else 0
metrics[name] = {
"accuracy": accuracy,
"true_positive_rate (recall)": recall,
"true_negative_rate": true_negative_rate,
"precision": precision,
"f1_score": f1_score
}
model.train()
return metrics