forked from Public-Health-Scotland/scotpho-profiles-tool
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsummary_charts.Rmd
142 lines (124 loc) · 5.25 KB
/
summary_charts.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
---
params:
chart_summary: NA #used
snapshot_data: NA #used
profile_summary: NA #used
summary_data: NA
comp_summary: NA
geoname_summary: NA
geotype_summary: NA
geocomp_summary: NA
# geometry: margin=0.5cm
output: html_vignette
# pdf_document:
# includes:
# in_header: preamble.tex
# To do,:
# add column layout - still doesn't work in word. What if I create the charts in ggplot
# then merge each column using ggpubr putting all in line and then merge the columns
# will this respect the size
# what about a solution exporting all charts as png within the rmd and then using the images
# in the report
# add conditions to input$chart_summary
# move to ggplot
# figure out width of plots
# if using html size is an issue
---
```{r setup}
knitr::opts_chunk$set(echo = F, cache = T)
```
```{r include=FALSE}
###############################################.
## Functions ----
###############################################.
###############################################.
# Function that creates a snapshot plot for a domain
plot_profile_snapshot <- function(domainchosen) {
# only selecting decided domain
prof_snap_data <- params$snapshot_data %>% subset(domain == domainchosen) %>%
droplevels() %>%
mutate(indicator = as.factor(indicator))
#If no data available for that period then plot message saying data is missing
if (is.data.frame(prof_snap_data) && nrow(prof_snap_data) == 0)
{
plot_nodata(height = 50)
} else {
# Tooltip
if (params$comp_summary == 1) {#depending if time or area comparison
tooltip_summary <- c(paste0("Area: ", prof_snap_data$measure, " || ",
"Comparator: ", prof_snap_data$comp_m, "<br>",
prof_snap_data$trend_axis, "<br>", prof_snap_data$type_definition))
} else if (params$comp_summary == 2) {
tooltip_summary <- c(paste0(prof_snap_data$trend_axis, ": ",
prof_snap_data$measure, " || ",
"Baseline: ", prof_snap_data$comp_m, "<br>",
prof_snap_data$type_definition))
}
# eliminating both axis
axis_layout <- list(title = "", fixedrange=TRUE, zeroline = FALSE, showline = FALSE,
showticklabels = FALSE, showgrid = FALSE)
# obtaining height for plot based on number of rows of indicators
n_ind <- prof_snap_data %>% nrow()
# when 0 or 1 indicators the plot needs at least that size to
# prevent the spinner from showing and let the tooltip work
height_plot <- case_when(n_ind > 1 ~ 38*n_ind+10,
TRUE ~ 75)
# defining plot function
plot_ly(prof_snap_data, y = ~indicator, color = ~color, height = height_plot,
colors= c(blue = "#4da6ff", gray = "gray88", red = "#ffa64d", white = "#ffffff")
) %>%
add_bars(x =1, showlegend= FALSE, width=1,
hoverinfo="text", hovertext = tooltip_summary,
marker = list(line= list(color="black", width = 0.5))) %>%
# adding indicator name at center of each bar
add_text(text = ~indic_multiline, x =0.5, showlegend= FALSE,
textfont = list(color='black'), hoverinfo="skip" ) %>%
layout(title = domainchosen,
yaxis = axis_layout, xaxis = axis_layout,
margin = list(b= 10 , t=5, l = 5, r = 0),
font = list(family = '"Helvetica Neue", Helvetica, Arial, sans-serif')) %>% # to get hover compare mode as default
config(displayModeBar = FALSE, displaylogo = F, editable =F)
}
}
```
#### `params$profile_summary` profile: `params$geoname_summary`
```{r echo=FALSE}
if (params$chart_summary == "Snapshot") {
if (params$profile_summary == "HWB") {
tagList(#Health and Wellbeing profile
column(4,
plot_profile_snapshot("Behaviours"),
plot_profile_snapshot("Social care & housing"),
plot_profile_snapshot("Environment"),
plot_profile_snapshot("Life expectancy & mortality")
),
column(4,
plot_profile_snapshot("Women's & children's health"),
plot_profile_snapshot("Immunisations & screening"),
plot_profile_snapshot("Economy"),
plot_profile_snapshot("Crime")
),
column(4,
plot_profile_snapshot("Mental health"),
plot_profile_snapshot("Ill health & injury"),
plot_profile_snapshot("Education")
)
) #taglist bracket
} else if (params$profile_summary == "CYP") {
tagList(#Children and young people profile
column(4,
plot_profile_snapshot("Active"),
plot_profile_snapshot("Healthy")
),
column(4,
plot_profile_snapshot("Included"),
plot_profile_snapshot("Nurtured"),
plot_profile_snapshot("Safe")
),
column(4,
plot_profile_snapshot("Achieving"),
plot_profile_snapshot("Responsible")
)
)# taglist bracket
}
}