-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataprep.py
42 lines (36 loc) · 1.57 KB
/
dataprep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import cv2
from matplotlib import pyplot as plt
import numpy as np
from skimage.feature import greycomatrix, greycoprops
#extracting relevant GLCM matrix feature for automatic classification of solar panels
def contrast_feature(matrix_coocurrence):
contrast = greycoprops(matrix_coocurrence, 'contrast')
return np.mean(contrast)
path=r'C:\Users\Asus\Desktop\projet\data\images'
os.listdir(path)
#thresholding images using Otsu's segmentation and classification using a basis contrast of value of 11
for index,img in enumerate(os.listdir(path)):
img_array=cv2.imread(os.path.join(path,img), cv2.IMREAD_GRAYSCALE)
ret, thresh = cv2.threshold(img_array, 120, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
bins = np.array([0, 16, 32, 48, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 255])
inds = np.digitize(thresh, bins)
max_value = inds.max()+1
matrix_coocurrence = greycomatrix(inds, [1], [0, np.pi/4, np.pi/2, 3*np.pi/4], levels=max_value, normed=False, symmetric=False)
with open('values.txt', 'a') as f:
f.write("image "+str(index)+"contrast value: "+str(contrast_feature(matrix_coocurrence))+"\n")
if (contrast_feature(matrix_coocurrence))>=11:
plt.imsave(f'dirty/{index}.png',thresh, cmap='gray')
else:
plt.imsave(f'clean/{index}.png',thresh,cmap='gray')
#renaming files in a sequential manner
path1='clean/'
path2='dirty/'
i=0
j=0
for image in os.listdir(path1):
os.rename(path1+image,path+f'{i}.png')
i+=1
for image in os.listdir(path2):
os.rename(path2+image,path+f'{j}.png')
j+=1