Skip to content

Latest commit

 

History

History
159 lines (115 loc) · 5.91 KB

README.md

File metadata and controls

159 lines (115 loc) · 5.91 KB

TextualDegRemoval

Implementation of Improving Image Restoration through Removing Degradations in Textual Representations

arXiv

The main contributions of this paper:

  • We introduce a new perspective for image restoration, i.e., performing restoration first in textual space where degradations and content are loosely coupled, and then utilizing the restored content to guide image restoration
  • To address the cross-modal assistance, we propose to embed an image-to-text mapper and textual restoration module into CLIP-equipped text-to-image models to generate clear guidance from degraded images.
  • Extensive experiments on multiple tasks demonstrate that our method improves the performance of state-of-the-art image restoration networks

1. Abstract

In this paper, we introduce a new perspective for improving image restoration by removing degradation in the textual representations of a given degraded image. Intuitively, restoration is much easier on text modality than image one. For example, it can be easily conducted by removing degradation-related words while keeping the contentaware words. Hence, we combine the advantages of images in detail description and ones of text in degradation removal to perform restoration. To address the cross-modal assistance, we propose to map the degraded images into textual representations for removing the degradations, and then convert the restored textual representations into a guidance image for assisting image restoration. In particular, We ingeniously embed an image-to-text mapper and text restoration module into CLIP-equipped text-to-image models to generate the guidance. Then, we adopt a simple coarse-to-fine approach to dynamically inject multiscale information from guidance to image restoration networks. Extensive experiments are conducted on various image restoration tasks, including deblurring, dehazing, deraining, and denoising, and all-in-one image restoration. The results showcase that our method outperforms state-of-the-art ones across all these tasks

2. Motivation

3. Framework

Environment Setup


    conda create -n textualdegremoval python=3.8
    conda activate textualdegremoval
    pip install -r requirements.txt

Preparation Datasets


Data and Pretrained models preparation please refer to DatasetPreparation.

Training


Train image-to-text mapping (I2T)

  CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --config_file 4_gpu.json --main_process_port 25656 scripts/train/main_train_i2t_mapping.py \
  --pretrained_stable_diffusion_path=path_to_stable_diffusion \
  --pretrained_clip_model_path=path_to_clip \
  --num_words=20 \
  --train_data_dir=[paths_to_traindata] \ 
  --placeholder_token="S" \
  --resolution=512 \
  --train_batch_size=4 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=200000 \
  --learning_rate=1e-06 --scale_lr \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --output_dir="./experiments/tr_mapping" \
  --i2t_mapper_path=path_to_trained_i2t_mapper_path \
  --save_steps 200

Train Textural-Restoration mapping (TR)

  CUDA_VISIBLE_DEVICES=0,1,2,3 accelerate launch --config_file 4_gpu.json --main_process_port 25656 scripts/train/main_train_tr_mapping.py \
  --pretrained_stable_diffusion_path=path_to_stable_diffusion \
  --pretrained_clip_model_path=path_to_clip \
  --num_words=20 \
  --train_data_dir=[paths_to_traindata] \ 
  --task_list=[task_name_aligned_with_datadir]
  --placeholder_token="S" \
  --resolution=512 \
  --train_batch_size=4 \
  --gradient_accumulation_steps=4 \
  --max_train_steps=200000 \
  --learning_rate=1e-06 --scale_lr \
  --lr_scheduler="constant" \
  --lr_warmup_steps=0 \
  --output_dir="./experiments/tr_mapping" \
  --i2t_mapper_path=path_to_trained_i2t_mapper_path \
  --tr_mapper_path=path_to_trained_tr_mapper_path \
  --save_steps 200

Generate reference images

    CUDA_VISIBLE_DEVICES=0 python scripts/generate/main_generate_reference.py 
    --pretrained_stable_diffusion_path=path_to_stable_diffusion \ 
    --pretrained_clip_path=path_to_clip \ 
    --inference_data_dir=path_to_input_dir \ 
    --i2t_mapper_path=path_to_i2t_mapper \
    --clean_mapper_path=path_to_tr_mapper \
    --num_words=20 \
    --template="a photo of a S"

Train Guided-Restoration

Training options list in options/train_restoration, e.g.

    CUDA_VISIBLE_DEVICES=0,1,2,3 python -m torch.distributed.launch --nproc_per_node=4 --master_port=1234 scripts/train/main_train_restoration_with_ref_input.py --opt path_to_options --dist True

Evaluation


Gaussian grayscale/color denoising

    python scripts/eval/main_evaluation_color_denoise15.py --dataroot path_to_testdata --checkpoint_path path_to_ckpt --task restormer

Deblurring, Deraining, Dehazeing, RWDenoising

    python scripts/eval/main_evaluation_deblur_derain_dehaze.py --dataroot path_to_testdata --checkpoint_path path_to_ckpt --task nafnet_deblur

Citation


@article{lin2023textualdegremoval,
  title={Improving Image Restoration through Removing Degradations in Textual Representations},
  author={Lin, Jingbo and Zhang, Zhilu and Wei, Yuxiang and Ren, Dongwei and Jiang, Dongsheng and Zuo, Wangmeng},
  journal={arXiv preprint arXiv:2312.17334},
  year={2023}
}

Acknowledgements


Thanks for code of KAIR and ELITE, our code is built on it. Thanks for the help of co-authors, Zhilu Zhang and Yuxiang Wei.


If you have any questions please contact jblincs1996@gmail.com.