-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathasynParallel.py
48 lines (37 loc) · 1.46 KB
/
asynParallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
### Load Essential Files:
database = '/home/learning/mrzResearchArena/NR/nr' # Please, set path where "nr" database directory is located.
PSSM = '/home/learning/mrzResearchArena/PSSM' # Please, set path where PSSM directory is located.
###
### Parameters:
core = 8 # multiprocessing.cpu_count(). Please don't use the maximum core.
iteration = 3 # If we increase the number iteration, then we will get the good quality of PSSM.
evalue = 0.001 # E-value
###
### Load Essential Modules:
import multiprocessing
import time
import glob
import os
os.chdir(PSSM) # PSSM file will generate in PSSM directory.
###
### Generate PSSM:
def runPSIBLAST(file):
try:
os.system('/home/learning/ncbi-blast-2.10.1+/bin/psiblast -query {} -db {} -out {}.out -num_iterations {} -out_ascii_pssm {}.pssm -inclusion_ethresh {} -comp_based_stats 0 -num_threads 1'.format(file, database, file, iteration, file, evalue))
except:
print('PSI-BLAST is error for the sequence {}!'.format(file))
return '{}, is error.'.format(file)
return '{}, is done.'.format(file)
#end-def
### Run Procedure:
begin = time.time()
pool = multiprocessing.Pool(processes=core)
results = [ pool.apply_async(runPSIBLAST, args=(file,)) for file in glob.glob('*.fasta') ] # for x in range(1, 10)
outputs = [result.get() for result in results]
end = time.time()
###
### Verdict:
print(sorted(outputs))
print()
print('Time elapsed: {} seconds.'.format(end - begin))
###