-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathmodel80211p.m
277 lines (225 loc) · 15 KB
/
model80211p.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
function [PDR,deltaSEN,deltaRXB,deltaPRO,deltaCOL,CBR] = model80211p(beta,lambda,Pt,B,Rd);
% model80211p is the main script of the implementation of the analytical
% models of the communication performance of IEEE 802.11p described in the following paper:
%
% Miguel Sepulcre, Manuel Gonzalez-Martín, Javier Gozalvez, Rafael Molina-Masegosa, Baldomero Coll-Perales,
% "Analytical Models of the Performance of IEEE 802.11p Vehicle to Vehicle Communications",
% IEEE Transactions on Vehicular Technology, November 2021. DOI: 10.1109/TVT.2021.3124708
% Final version available at: https://ieeexplore.ieee.org/document/9599363
% Post-print version available at: https://arxiv.org/abs/2104.07923
%
% This paper addresses presents the first analytical models capable to accurately
% model the performance of vehicle-to-vehicle communications based on the IEEE 802.11p standard.
% The model quantifies the PDR (Packet Delivery Ratio) as a function of the distance between
% transmitter and receiver. The paper also presents new analytical models to quantify the
% probability of the four different types of packet errors in IEEE 802.11p. In addition, the
% paper presents the first analytical model capable to accurately estimate the Channel Busy Ratio
% (CBR) metric even under high channel load levels. All the analytical models are validated by
% means of simulation for a wide range of parameters, including traffic densities, packet
% transmission frequencies, transmission power levels, data rates and packet sizes.
%
% In order to comply with our sponsor guidelines, we would appreciate if any publication using
% this code references the above-mentioned publication.
%
% model80211p.m is the main script you have to run to get the PDR curve as a function of the
% distance for a given set of parameters, the probability of each of the four
% transmission errors and the CBR.
%
% The resulting figures are compared with simulations when the same configuration
% is available in the ./simulations folder.
%
% Input parameters:
% beta: traffic density in veh/m. Values tested: 0.06 and 0.12 veh/m.
% lambda: packet transmission frequency in Hz. Values tested: 10 and 25 Hz.
% Pt: transmission power in dBm. Values tested: 15, 23 and 30 dBm.
% B: packet size in bytes. Values tested: 190 and 500 Bytes.
% Rd: data rate in bits/s. Values tested: 6, 18 and 27 Mbps.
%
% Output metrics:
% PDR: Packet Delivery Ratio for different Tx-Rx distances
% deltaSEN: probability of packet loss due to a received signal power below the sensing power threshold for different Tx-Rx distances
% deltaRXB: probability of packet loss because the radio interface is busy receiving another packet
% deltaPRO: probability of packet loss due to propagation effects for different Tx-Rx distances
% deltaCOL: probability of packet loss due to packet collisions for different Tx-Rx distances
% CBR: Channel Busy Ratio between 0 and 1
%
% The equations that are identified with a number between brackets in this script are the ones
% that also appear in the paper so that they can be easily identified.
disp('=========================================================')
disp('Input parameters:')
fprintf(' beta = %f veh/m \n', beta)
fprintf(' lambda = %d Hz \n', lambda)
fprintf(' Pt = %d dBm \n', Pt)
fprintf(' B = %d bytes \n', B)
fprintf(' Rd = %d Mbps \n', Rd/1e6)
% Configuration parameters and settings:
distance_tx_to_rx = [0:25:500]; % Tx-Rx distances to evaluate (m)
step_dB = 0.1; % Discrete steps to compute the PDF of the SNR and SINR (dB)
BW = 10e6; % Channel bandwidth (Hz)
Psen = -85; % Sensing threshold (dBm)
noise = -95; % Background noise in 10 MHz assuming a noise figure of 9dB (dBm)
sigma = 13e-6; % aSlotTime in 802.11-2012 (seconds)
H = 30; % length of headers in Omnet++ approx (Bytes)
Ttr = 40e-6 + (B+H)*8/Rd; % Packet transmission time (duration) in 802.11-2012 (page 1588,1591) = T_preamble + T_signal + T_data ; t_preamble = 32 us , t_signal = 8 us , t_data = nºbits/data_rate
% Compute the PSR (Packet Sensing Ratio):
d_aux=-1500:1500;
[ PL std_dev ] = get_PL_SH(d_aux); % Pathloss and shadowing standard deviation for the propagation model considered
PSR = 0.5 * ( 1 + erf( ( Pt - PL - Psen)./( std_dev*sqrt(2) ) ) ); % Equation (13)
% Compute the CBR (Channel Busy Ratio):
CBR_u = beta * lambda * Ttr * sum(PSR); % Equation (34)
CBR = - 0.2481*CBR_u^2 + 0.913*CBR_u + 0.003844; % Equation (35)
% Compute SEN and PRO errors due to propagation effects for all
% distances between tx and rx:
deltaSEN_pre = zeros(1,length(distance_tx_to_rx)); % Initialization
deltaPRO_pre = zeros(1,length(distance_tx_to_rx)); % Initialization
for i=1:length(distance_tx_to_rx)
% Compute the probability of error due to a received signal power
% below the sensing power threshold for a distance
% distance_tx_to_rx(i) between tx and rx:
[PL_Tx_Rx(i) std_dev_Tx_Rx(i)] = get_PL_SH( distance_tx_to_rx(i) ); % Pathloss and shadowing standard deviation for the propagation model considered
deltaSEN_pre(i) = 0.5 * (1 - erf( ( Pt - PL_Tx_Rx(i) - Psen )/(std_dev_Tx_Rx(i)*sqrt(2)) ) ); % Equation (12)
% Compute the probability of error due to a insufficient SNR for a distance
% distance_tx_to_rx(i) between tx and rx:
[SNR PDF_SNR] = get_SINRdistribution( Pt-PL_Tx_Rx(i) , -inf , std_dev_Tx_Rx(i) , std_dev_Tx_Rx(i) , noise , Psen , step_dB); % Distribution of the SNR of the received packet (without interference, i.e. -inf dB)
Eb_No = SNR + 10*log10(BW/Rd); % Linear transformation
PDF_Eb_No = PDF_SNR; % SNR and Eb/No have the same probability distribution
deltaPRO_pre(i) = get_FER( Eb_No , PDF_Eb_No , step_dB ); % Equation (24)
end
% Compute the probability of error because the receiver is busy and the
% probability of error due to collision for all distances between tx and rx:
Lint_max = round(1000*beta)/beta; % Distance to the farthest interfering vehicle. Up to 1000m distances considered to speed up the calculations.
distance_int_to_rx = [-Lint_max : 1/beta : Lint_max]; % Distances from all the interfering vehicles to the receiving vehicle.
distance_int_to_rx ( (length(distance_int_to_rx)+1)/2) = []; % Remove from the list the position of the receiving vehicle.
R_PSR = xcorr(PSR); % Autocorrelation of the PSR function. Equation (20)
R_PSR = R_PSR(2*max(d_aux)+1:end) / max(R_PSR); % Remove left part of the function and normalize
for d=1:length(distance_tx_to_rx)
distance_int_to_tx = distance_int_to_rx + distance_tx_to_rx(d); % Distances from all the interfering vehicles to the transmitting vehicle.
for i = 1:length(distance_int_to_rx) % Compute the probability for every interfering vehicle
[PL_i_Rx std_dev_i_Rx] = get_PL_SH( abs(distance_int_to_rx(i))); % Pathloss and shadowing for interf and rx
[PL_i_Tx std_dev_i_Tx] = get_PL_SH( abs(distance_int_to_tx(i))); % Pathloss and shadowing for interf and tx
if deltaPRO_pre(d) == 1
p_int(i) = 0; % If the probability of propagation error is one, we don't need to calculate the collision error because it is zero.
else
[SINR PDF_SINR] = get_SINRdistribution( Pt-PL_Tx_Rx(d) , Pt-PL_i_Rx , std_dev_Tx_Rx(d) , std_dev_i_Rx , noise , Psen , step_dB); % % Distribution of the SINR of the received packet considering vehicle vi as interferer
Eb_No = SINR + 10*log10(BW/Rd); % Convert SINR to Eb/No
PDF_Eb_No = PDF_SINR; % Convert SINR to Eb/No
pSINR(i) = get_FER( Eb_No , PDF_Eb_No , step_dB ); % Equation (30)
p_int(i) = (pSINR(i)-deltaPRO_pre(d)) / (1 - deltaPRO_pre(d)); % Equation (31)
end
p_DET_i_Rx(i) = 0.5 * (1 + erf(( Pt - PL_i_Rx - Psen )/(sqrt(2)*std_dev_i_Rx))); % Probability that the receiving vehicle (vr) senses the interfering one (vi)
p_DET_i_Tx(i) = 0.5 * (1 + erf(( Pt - PL_i_Tx - Psen )/(sqrt(2)*std_dev_i_Tx))); % Probability that the interfering vehicle (vi) senses the transmitting one (vt) or viceversa
p_sim_CT(i) = sigma * lambda * p_DET_i_Tx(i) / (1-CBR*R_PSR( round( abs(distance_int_to_tx(i)) ) + 1 )) ; % Equation (22)
% Differentiate when the interfering is closer than the transmitter: Equation (21)
if abs(distance_int_to_rx(i)) < abs(distance_tx_to_rx(d))
p_RXB_CT(i) = p_sim_CT(i) * p_DET_i_Rx(i) ;
else
p_RXB_CT(i) = 0 ;
end
p_RXB_HT(i) = Ttr * lambda * p_DET_i_Rx(i) *(1-p_DET_i_Tx(i)) / (1-CBR*R_PSR( round( abs(distance_int_to_tx(i)) ) + 1 )); % Equation (16)
% Differentiate when the interfering is closer than the transmitter: Equation (32)
if abs(distance_int_to_rx(i)) >= abs(distance_tx_to_rx(d))
p_COL_CT(i) = p_int(i) * p_sim_CT(i);
else
p_COL_CT(i) = 0;
end
p_sim_HT(i) = Ttr * lambda * (1-p_DET_i_Tx(i)) / (1-CBR*R_PSR( round( abs(distance_int_to_tx(i)) ) + 1 )) ; % Equation (18)
p_COL_HT(i) = p_int(i) * p_sim_HT(i) + p_int(i) * p_sim_HT(i) * ( 1-p_DET_i_Rx(i) ) ; % Equation (28)
end
% Combine the probability for all potential interfering vehicles to compute the overall probabilities:
deltaRXB_pre(d) = 1 - prod( 1 - ( p_RXB_CT + p_RXB_HT ) ); % Equation (14)
deltaCOL_pre(d) = 1 - prod( 1 - ( p_COL_CT + p_COL_HT ) ) ; % Equation (26)
% Calculate final probabilities for each type of error:
deltaSEN(d) = deltaSEN_pre(d); % Equation (3)
deltaRXB(d) = deltaRXB_pre(d) * ( 1 - deltaSEN_pre(d) ); % Equation (4)
deltaPRO(d) = deltaPRO_pre(d) * ( 1 - deltaSEN_pre(d) ) * ( 1 - deltaRXB_pre(d) ); % Equation (5)
deltaCOL(d) = deltaCOL_pre(d) * ( 1 - deltaSEN_pre(d) ) * ( 1 - deltaRXB_pre(d) ) * ( 1 - deltaPRO_pre(d) ); % Equation (6)
end
% Compute the Packet Delivery Ratio:
PDR = 1 - deltaSEN - deltaRXB - deltaPRO - deltaCOL; % Equation (1)
% Figures with simulation results for validation:
file1 = ['simulations\ERRORS_' num2str(beta) 'vehm_' num2str(Rd/1e6) 'Mbps_' num2str(lambda) 'Hz_Pt' num2str(Pt) '_' num2str(B) 'Bytes.fig'];
file2 = ['simulations\PDR_' num2str(beta) 'vehm_' num2str(Rd/1e6) 'Mbps_' num2str(lambda) 'Hz_Pt' num2str(Pt) '_' num2str(B) 'Bytes.fig'];
file3 = ['simulations\CBR_' num2str(beta) 'vehm_' num2str(Rd/1e6) 'Mbps_' num2str(lambda) 'Hz_Pt' num2str(Pt) '_' num2str(B) 'Bytes.fig'];
disp('Output: ')
file_out = [num2str(beta) 'vehm_' num2str(Rd/1e6) 'Mbps_' num2str(lambda) 'Hz_Pt' num2str(Pt) '_' num2str(B) 'Bytes.fig'];
CBR_sim = 0;
% Load simulation results if they exist:
if exist(file1,'file')
fig_ERR = openfig(file1);
lh = findall(fig_ERR, 'type', 'line');
X = get(lh,'xdata');
Y = get(lh,'ydata');
delta_PRO_sim = Y{4};
delta_COL_sim = Y{3};
delta_RXB_sim = Y{2};
delta_SEN_sim = Y{1};
fig_PDR = open(file2);
lh = findall(fig_PDR, 'type', 'line');
distance_sim = get(lh,'xdata');
PDR_sim = get(lh,'ydata');
clear lh
if exist(file3,'file')
fig_CBR = open(file3);
hold on
lh = findall(fig_CBR, 'type', 'bar');
x_cbr_sim = get(lh,'xdata');
pdf_cbr_sim = get(lh,'ydata');
CBR_sim = sum(x_cbr_sim.*pdf_cbr_sim);
clear lh
disp([' CBR simulation: ' num2str(CBR_sim)])
stem(CBR,1,'b')
legend('Simulation','Analytical')
disp([' CBR analytical: ' num2str(CBR) ' (' num2str(100*abs(CBR_sim-CBR)/CBR_sim) '% error)'])
else
disp([' CBR analytical: ' num2str(CBR) ])
end
else
disp(' Equivalent simulation not available.')
fig_ERR = figure;
fig_PDR = figure;
disp([' CBR analytical: ' num2str(CBR) ])
end
% Plot analytical curves obtained for the different types of errors:
figure(fig_ERR)
hold on
plot(distance_tx_to_rx , deltaPRO, 'r--','LineWidth',2);
plot(distance_tx_to_rx , deltaCOL, 'k--','LineWidth',2);
plot(distance_tx_to_rx , deltaRXB, 'g--','LineWidth',2);
plot(distance_tx_to_rx , deltaSEN, 'm--','LineWidth',2);
titulo = [num2str(beta*1000) ' veh/km, ' num2str(lambda) ' pkt/s, ' num2str(Rd/1e6) ' Mbps, ' num2str(Pt) ' dBm, ' num2str(B) ' Bytes'];
title(titulo)
ylim([0 1])
ylabel('Probability')
xlabel('Distance Tx-Rx (m)')
if exist(file1,'file')
legend('PRO sim' , 'COL sim' , 'RXB sim', 'SEN sim','PRO analit' , 'COL analit' , 'RXB analit', 'SEN analit','location','northwest')
else
legend('PRO analit' , 'COL analit' , 'RXB analit', 'SEN analit','location','northwest')
end
% Plot analytical PDR curve obtained:
figure(fig_PDR)
hold on
plot(distance_tx_to_rx , PDR , 'b--','LineWidth',2);
ylim([0 1])
title(titulo)
ylabel('PDR')
xlabel('Distance Tx-Rx (m)')
if exist(file1,'file')
legend('Simulation','Analytical')
else
legend('Analytical')
end
if exist(file1,'file')
% Mean Absolute Deviation (MAD) between the simulation and the analytical model
% of the PDR and the different error types using equation (36):
MAD_PDR = mean( abs(PDR - PDR_sim) )*100;
MAD_SEN = mean( abs(deltaSEN - delta_SEN_sim) )*100;
MAD_PRO = mean( abs(deltaPRO - delta_PRO_sim) )*100;
MAD_RXB = mean( abs(deltaRXB - delta_RXB_sim) )*100;
MAD_COL = mean( abs(deltaCOL - delta_COL_sim) )*100;
disp(' Mean Absolute Deviation results: ')
fprintf(' PDR \tSEN \tRXB \tPRO \tCOL \n')
fprintf(' %.2f\t%.2f\t%.2f\t%.2f\t%.2f \n', MAD_PDR, MAD_SEN, MAD_RXB, MAD_PRO, MAD_COL)
end
disp('=========================================================')
return