-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdendrogram_cut.py
129 lines (107 loc) · 5.31 KB
/
dendrogram_cut.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# code source: https://github.com/jerrylin0809/pac-bayesian-dendrogram-cut/blob/main/dendrogram_cut.py
# description: https://towardsdatascience.com/automatic-dendrogram-cut-e019202e59a7
import numpy as np
import pandas as pd
import scipy.spatial
import scipy.cluster
class PACBayes:
def __init__(self, k_max, method='average'):
self.k_max = k_max
self.method = method
def fit(self, distance_matrix):
'''
Build linkage_stats
css: cross sum of square when merging c1 and c2
tss: total sum of square of merged cluster
'''
self.distance_matrix = distance_matrix
self.n_data = distance_matrix.shape[0]
self.linkage = scipy.cluster.hierarchy.linkage(scipy.spatial.distance.squareform(distance_matrix), method=self.method, optimal_ordering=True)
self.linkage_stats = [{'c1': 0, 'c2': 0, 'css': 0, 'tss': 0, 'indices': set()} for _ in range(2 * self.n_data - 1)]
for i in range(self.n_data):
self.linkage_stats[i]['c1'] = i
self.linkage_stats[i]['c2'] = i
self.linkage_stats[i]['indices'].add(i)
for i, (c1, c2, _, _) in enumerate(self.linkage):
c1 = int(c1)
c2 = int(c2)
self.linkage_stats[i + self.n_data]['c1'] = c1
self.linkage_stats[i + self.n_data]['c2'] = c2
self.linkage_stats[i + self.n_data]['indices'].update(self.linkage_stats[c1]['indices'])
self.linkage_stats[i + self.n_data]['indices'].update(self.linkage_stats[c2]['indices'])
for i in range(self.n_data, 2 * self.n_data - 1):
c1 = self.linkage_stats[i]['c1']
c2 = self.linkage_stats[i]['c2']
c1_indices = np.asarray(list(self.linkage_stats[c1]['indices']))
c2_indices = np.asarray(list(self.linkage_stats[c2]['indices']))
sample_distances = distance_matrix[c1_indices, :][:, c2_indices]
self.linkage_stats[i]['css'] = np.sum(sample_distances ** 2)
self.linkage_stats[i]['tss'] = self.linkage_stats[i]['css'] + self.linkage_stats[c1]['tss'] + self.linkage_stats[c2]['tss']
### dynamic programming ###
'''
Dynamic programming
kl_mat[i, k]: the number of clusters in the left branch of linkage_stat[$i], maximal cluster $k
mss_mat[i, k]: the optimal mean square error achieved at linkage_stat[$i], maximal cluster $k
'''
self.kl_mat = np.zeros((self.n_data * 2 - 1, self.k_max + 1), dtype=int)
self.mss_mat = np.zeros((self.n_data * 2 - 1, self.k_max + 1), dtype=float) + np.inf
for i in range(self.n_data):
self.mss_mat[i, 1] = 0
for i in range(self.n_data, 2 * self.n_data - 1):
self.mss_mat[i, 1] = self.linkage_stats[i]['tss'] / len(self.linkage_stats[i]['indices'])
for i in range(self.n_data, 2 * self.n_data - 1):
for k in range(2, self.k_max + 1):
kl_min = 0
mss_min = np.inf
for kl in range(1, k):
tss = self.mss_mat[self.linkage_stats[i]['c1'], kl] + self.mss_mat[self.linkage_stats[i]['c2'], k - kl]
if tss < mss_min:
kl_min = kl
mss_min = tss
self.kl_mat[i, k] = kl_min
self.mss_mat[i, k] = mss_min
return self
def _get_cut_nodes(self, v, k):
if k == 1:
yield v
else:
yield from self._get_cut_nodes(self.linkage_stats[v]['c1'], self.kl_mat[v, k])
yield from self._get_cut_nodes(self.linkage_stats[v]['c2'], k - self.kl_mat[v, k])
def get_cluster_mss(self, k):
total_mss = 0.
for cid in self._get_cut_nodes(2 * self.n_data - 2, k):
total_mss += self.linkage_stats[cid]['tss'] / len(self.linkage_stats[cid]['indices'])
return total_mss
def get_cluster_label(self, k):
### get flat clusters ###
z = np.zeros(self.n_data, dtype=int) - 1
for c, cid in enumerate(self._get_cut_nodes(2 * self.n_data - 2, k)):
for i in self.linkage_stats[cid]['indices']:
if z[i] != -1:
print(i)
z[i] = c
return z
def _dirichlet_process_kl(self, n_list, alpha_):
out = 0.
count = alpha_
for n in n_list:
out -= np.log(alpha_ / count)
count += 1
for i in range(1, n):
out -= np.log(i / count)
count += 1
return out
def pac_bayesian_cut(self, alpha_=1., lambda_=1.):
min_loss = np.inf
min_loss_k = None
loss_list = []
for k in range(1, self.k_max + 1):
n_list = [len(self.linkage_stats[c]['indices']) for c in self._get_cut_nodes(2 * self.n_data - 2, k)]
total_mss = self.get_cluster_mss(k)
loss = total_mss + self._dirichlet_process_kl(n_list, alpha_) / lambda_
loss_list.append(loss)
if loss < min_loss:
min_loss = loss
min_loss_k = k
df = pd.DataFrame(list(zip([*range(1, self.k_max + 1)], loss_list)), columns=['k', 'loss'])
return df