-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmisc.py
422 lines (340 loc) · 13.1 KB
/
misc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
# MIT License
# Copyright (c) 2022 Intelligent Systems Lab Org
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# File author: Shariq Farooq Bhat
"""Miscellaneous utility functions."""
import base64
import math
import re
from io import BytesIO
import matplotlib
import matplotlib.cm
import numpy as np
import requests
import torch
import torch.distributed as dist
import torch.nn
import torch.nn as nn
import torch.utils.data.distributed
from PIL import Image
from scipy import ndimage
from torchvision.transforms import ToTensor
class RunningAverage:
def __init__(self):
self.avg = 0
self.count = 0
def append(self, value):
self.avg = (value + self.count * self.avg) / (self.count + 1)
self.count += 1
def get_value(self):
return self.avg
def denormalize(x):
"""Reverses the imagenet normalization applied to the input.
Args:
x (torch.Tensor - shape(N,3,H,W)): input tensor
Returns:
torch.Tensor - shape(N,3,H,W): Denormalized input
"""
mean = torch.Tensor([0.485, 0.456, 0.406]).view(1, 3, 1, 1).to(x.device)
std = torch.Tensor([0.229, 0.224, 0.225]).view(1, 3, 1, 1).to(x.device)
return x * std + mean
class RunningAverageDict:
"""A dictionary of running averages."""
def __init__(self):
self._dict = None
def update(self, new_dict):
if new_dict is None:
return
if self._dict is None:
self._dict = dict()
for key, value in new_dict.items():
self._dict[key] = RunningAverage()
for key, value in new_dict.items():
self._dict[key].append(value)
def get_value(self):
if self._dict is None:
return None
return {key: value.get_value() for key, value in self._dict.items()}
def colorize(
value,
vmin=None,
vmax=None,
cmap="gray_r",
invalid_val=-99,
invalid_mask=None,
background_color=(128, 128, 128, 255),
gamma_corrected=False,
value_transform=None,
):
"""Converts a depth map to a color image.
Args:
value (torch.Tensor, numpy.ndarry): Input depth map. Shape: (H, W) or (1, H, W) or (1, 1, H, W). All singular dimensions are squeezed
vmin (float, optional): vmin-valued entries are mapped to start color of cmap. If None, value.min() is used. Defaults to None.
vmax (float, optional): vmax-valued entries are mapped to end color of cmap. If None, value.max() is used. Defaults to None.
cmap (str, optional): matplotlib colormap to use. Defaults to 'magma_r'.
invalid_val (int, optional): Specifies value of invalid pixels that should be colored as 'background_color'. Defaults to -99.
invalid_mask (numpy.ndarray, optional): Boolean mask for invalid regions. Defaults to None.
background_color (tuple[int], optional): 4-tuple RGB color to give to invalid pixels. Defaults to (128, 128, 128, 255).
gamma_corrected (bool, optional): Apply gamma correction to colored image. Defaults to False.
value_transform (Callable, optional): Apply transform function to valid pixels before coloring. Defaults to None.
Returns:
numpy.ndarray, dtype - uint8: Colored depth map. Shape: (H, W, 4)
"""
if isinstance(value, torch.Tensor):
value = value.detach().cpu().numpy()
value = value.squeeze()
if invalid_mask is None:
invalid_mask = value == invalid_val
mask = np.logical_not(invalid_mask)
# normalize
vmin = np.percentile(value[mask], 2) if vmin is None else vmin
vmax = np.percentile(value[mask], 85) if vmax is None else vmax
if vmin != vmax:
value = (value - vmin) / (vmax - vmin) # vmin..vmax
else:
# Avoid 0-division
value = value * 0.0
# squeeze last dim if it exists
# grey out the invalid values
value[invalid_mask] = np.nan
cmapper = matplotlib.cm.get_cmap(cmap)
if value_transform:
value = value_transform(value)
# value = value / value.max()
value = cmapper(value, bytes=True) # (nxmx4)
# img = value[:, :, :]
img = value[...]
img[invalid_mask] = background_color
# return img.transpose((2, 0, 1))
if gamma_corrected:
# gamma correction
img = img / 255
img = np.power(img, 2.2)
img = img * 255
img = img.astype(np.uint8)
return img
def count_parameters(model, include_all=False):
return sum(p.numel() for p in model.parameters() if p.requires_grad or include_all)
def compute_errors(gt, pred):
"""Compute metrics for 'pred' compared to 'gt'
Args:
gt (numpy.ndarray): Ground truth values
pred (numpy.ndarray): Predicted values
gt.shape should be equal to pred.shape
Returns:
dict: Dictionary containing the following metrics:
'a1': Delta1 accuracy: Fraction of pixels that are within a scale factor of 1.25
'a2': Delta2 accuracy: Fraction of pixels that are within a scale factor of 1.25^2
'a3': Delta3 accuracy: Fraction of pixels that are within a scale factor of 1.25^3
'abs_rel': Absolute relative error
'rmse': Root mean squared error
'log_10': Absolute log10 error
'sq_rel': Squared relative error
'rmse_log': Root mean squared error on the log scale
'silog': Scale invariant log error
"""
thresh = np.maximum((gt / pred), (pred / gt))
a1 = (thresh < 1.25).mean()
a2 = (thresh < 1.25**2).mean()
a3 = (thresh < 1.25**3).mean()
abs_rel = np.mean(np.abs(gt - pred) / gt)
sq_rel = np.mean(((gt - pred) ** 2) / gt)
rmse = (gt - pred) ** 2
rmse = np.sqrt(rmse.mean())
rmse_log = (np.log(gt) - np.log(pred)) ** 2
rmse_log = np.sqrt(rmse_log.mean())
err = np.log(pred) - np.log(gt)
silog = np.sqrt(np.mean(err**2) - np.mean(err) ** 2) * 100
log_10 = (np.abs(np.log10(gt) - np.log10(pred))).mean()
return dict(
a1=a1,
a2=a2,
a3=a3,
abs_rel=abs_rel,
rmse=rmse,
log_10=log_10,
rmse_log=rmse_log,
silog=silog,
sq_rel=sq_rel,
)
def compute_metrics(
gt,
pred,
interpolate=True,
garg_crop=False,
eigen_crop=True,
dataset="nyu",
min_depth_eval=0.1,
max_depth_eval=10,
**kwargs,
):
"""Compute metrics of predicted depth maps. Applies cropping and masking as necessary or specified via arguments. Refer to compute_errors for more details on metrics."""
if "config" in kwargs:
config = kwargs["config"]
garg_crop = config.garg_crop
eigen_crop = config.eigen_crop
min_depth_eval = config.min_depth_eval
max_depth_eval = config.max_depth_eval
if gt.shape[-2:] != pred.shape[-2:] and interpolate:
pred = nn.functional.interpolate(
pred, gt.shape[-2:], mode="bilinear", align_corners=True
)
pred = pred.squeeze().cpu().numpy()
pred[pred < min_depth_eval] = min_depth_eval
pred[pred > max_depth_eval] = max_depth_eval
pred[np.isinf(pred)] = max_depth_eval
pred[np.isnan(pred)] = min_depth_eval
gt_depth = gt.squeeze().cpu().numpy()
valid_mask = np.logical_and(gt_depth > min_depth_eval, gt_depth < max_depth_eval)
if garg_crop or eigen_crop:
gt_height, gt_width = gt_depth.shape
eval_mask = np.zeros(valid_mask.shape)
if garg_crop:
eval_mask[
int(0.40810811 * gt_height) : int(0.99189189 * gt_height),
int(0.03594771 * gt_width) : int(0.96405229 * gt_width),
] = 1
elif eigen_crop:
# print("-"*10, " EIGEN CROP ", "-"*10)
if dataset == "kitti":
eval_mask[
int(0.3324324 * gt_height) : int(0.91351351 * gt_height),
int(0.0359477 * gt_width) : int(0.96405229 * gt_width),
] = 1
else:
# assert gt_depth.shape == (480, 640), "Error: Eigen crop is currently only valid for (480, 640) images"
eval_mask[45:471, 41:601] = 1
else:
eval_mask = np.ones(valid_mask.shape)
valid_mask = np.logical_and(valid_mask, eval_mask)
return compute_errors(gt_depth[valid_mask], pred[valid_mask])
#################################### Model uilts ################################################
def parallelize(config, model, find_unused_parameters=True):
if config.gpu is not None:
torch.cuda.set_device(config.gpu)
model = model.cuda(config.gpu)
config.multigpu = False
if config.distributed:
# Use DDP
config.multigpu = True
config.rank = config.rank * config.ngpus_per_node + config.gpu
dist.init_process_group(
backend=config.dist_backend,
init_method=config.dist_url,
world_size=config.world_size,
rank=config.rank,
)
config.batch_size = int(config.batch_size / config.ngpus_per_node)
# config.batch_size = 8
config.workers = int(
(config.num_workers + config.ngpus_per_node - 1) / config.ngpus_per_node
)
print(
"Device",
config.gpu,
"Rank",
config.rank,
"batch size",
config.batch_size,
"Workers",
config.workers,
)
torch.cuda.set_device(config.gpu)
model = nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = model.cuda(config.gpu)
model = torch.nn.parallel.DistributedDataParallel(
model,
device_ids=[config.gpu],
output_device=config.gpu,
find_unused_parameters=find_unused_parameters,
)
elif config.gpu is None:
# Use DP
config.multigpu = True
model = model.cuda()
model = torch.nn.DataParallel(model)
return model
#################################################################################################
#####################################################################################################
class colors:
"""Colors class:
Reset all colors with colors.reset
Two subclasses fg for foreground and bg for background.
Use as colors.subclass.colorname.
i.e. colors.fg.red or colors.bg.green
Also, the generic bold, disable, underline, reverse, strikethrough,
and invisible work with the main class
i.e. colors.bold
"""
reset = "\033[0m"
bold = "\033[01m"
disable = "\033[02m"
underline = "\033[04m"
reverse = "\033[07m"
strikethrough = "\033[09m"
invisible = "\033[08m"
class fg:
black = "\033[30m"
red = "\033[31m"
green = "\033[32m"
orange = "\033[33m"
blue = "\033[34m"
purple = "\033[35m"
cyan = "\033[36m"
lightgrey = "\033[37m"
darkgrey = "\033[90m"
lightred = "\033[91m"
lightgreen = "\033[92m"
yellow = "\033[93m"
lightblue = "\033[94m"
pink = "\033[95m"
lightcyan = "\033[96m"
class bg:
black = "\033[40m"
red = "\033[41m"
green = "\033[42m"
orange = "\033[43m"
blue = "\033[44m"
purple = "\033[45m"
cyan = "\033[46m"
lightgrey = "\033[47m"
def printc(text, color):
print(f"{color}{text}{colors.reset}")
############################################
def get_image_from_url(url):
response = requests.get(url)
img = Image.open(BytesIO(response.content)).convert("RGB")
return img
def url_to_torch(url, size=(384, 384)):
img = get_image_from_url(url)
img = img.resize(size, Image.ANTIALIAS)
img = torch.from_numpy(np.asarray(img)).float()
img = img.permute(2, 0, 1)
img.div_(255)
return img
def pil_to_batched_tensor(img):
return ToTensor()(img).unsqueeze(0)
def save_raw_16bit(depth, fpath="raw.png"):
if isinstance(depth, torch.Tensor):
depth = depth.squeeze().cpu().numpy()
assert isinstance(depth, np.ndarray), "Depth must be a torch tensor or numpy array"
assert depth.ndim == 2, "Depth must be 2D"
depth = depth * 256 # scale for 16-bit png
depth = depth.astype(np.uint16)
depth = Image.fromarray(depth)
depth.save(fpath)
print("Saved raw depth to", fpath)