forked from asudhakar-umass/HappyHapke
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcli.py
227 lines (198 loc) · 10.4 KB
/
cli.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#!/usr/bin/env python3
"""
This program runs a Hapke radiative transfer model to derive optical
constants n and k from reflectance data. This version of the program
assumes that you have used a calibrated spectralon standard.
"""
from __future__ import division, print_function
import numpy as np
import os
from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter
from matplotlib import pyplot as plt
import analysis
from hapke_model import get_hapke_model
def parse_args():
data_dir = os.path.relpath(os.path.join(os.path.dirname(__file__),
'..', 'data'))
ap = ArgumentParser(description=__doc__,
formatter_class=ArgumentDefaultsHelpFormatter)
g = ap.add_argument_group('Data Files', description="""
Input MAT-files for your three grain sizes (VNIR spectral names).
Data should be 2-column (wavelength, data) with no header.
Can be in nm or microns but not wavenumbers.""")
g.add_argument('--small-file', default=os.path.join(data_dir, 'kjs.mat'),
help='Small grain size')
g.add_argument('--medium-file', default=os.path.join(data_dir, 'kjm.mat'),
help='Medium grain size')
g.add_argument('--large-file', default=os.path.join(data_dir, 'kjb.mat'),
help='Large grain size')
g.add_argument('--mir-dispersion-k', help='MIR k data',
default=os.path.join(data_dir, 'kjar_110813_disp_k.mat'))
g.add_argument('--mir-dispersion-v', help='MIR wavelength data',
default=os.path.join(data_dir, 'kjar_110813_disp_v.mat'))
g = ap.add_argument_group('Calibration Files', description="""
Only needed for --scatter-type=isotropic""")
g.add_argument('--specwave-file', help='Matlab MAT-file with specwave data',
default=os.path.join(data_dir, 'specwave2.mat'))
g.add_argument('--calspec-file', help='Matlab MAT-file with calspec data',
default=os.path.join(data_dir, 'calspecw2.mat'))
g = ap.add_argument_group('Usable Range', description="""
Usable range of wavelengths (in microns) - if you have bad data in the file,
it will make the slope and intercept calculations wonky.
LOW MUST BE AT LEAST ONE POINT IN FROM END OF DATA""")
g.add_argument('--low', default=0.32, help='Lower bound.')
g.add_argument('--high', default=2.55, help='Upper bound.')
g = ap.add_argument_group('Known Variables')
g.add_argument('--incident-angle', dest='thetai', default=-30,
help='Incident angle, degrees.')
g.add_argument('--emission-angle', dest='thetae', default=0,
help='Emission angle, degrees.')
g.add_argument('--average-n', dest='n1', default=(1.714+1.8175)/2,
help='Average n, usually at sodium D line.')
g.add_argument('--anchor', default=0.58929,
help='Anchor wavelength at which --average-n was determined.')
g.add_argument('--opposition-surge', dest='Bg', default=0,
help='Opposition surge, can be 0 if angular diff > 15.')
g.add_argument('--extinction-efficiency', dest='QE', default=1,
help=('Extinction efficiency, '
'set to 1 for closely-spaced particles.'))
g.add_argument('--uv', dest='UV', default=0.301,
help=('UV wavelength point for extrapolation. '
'We only need about 10 points but more is better.'))
g = ap.add_argument_group('Hapke Model Parameters', description="""
Choices about the parameterization of the model.""")
g.add_argument('--phase-function', choices=('legendre', 'dhg', 'constant'),
default='legendre', help='Type of phase function to use.')
g.add_argument('--scatter-type', choices=('isotropic', 'lambertian'),
default='isotropic', help='Type of scattering to use.')
g = ap.add_argument_group('Radiance Parameters', description="""
Values for each of small, medium, and large grain sizes.""")
g.add_argument('--grain-size', dest='D', nargs=3, type=float,
default=[45, 63, 90], help='Grain size guesses.')
g.add_argument('--grain-size-lower', dest='lowD', nargs=3, type=float,
default=[21, 30, 50], help='Grain size lower bounds.')
g.add_argument('--grain-size-upper', dest='upD', nargs=3, type=float,
default=[106, 150, 180], help='Grain size lower bounds.')
g.add_argument('--internal-scattering', dest='s', nargs=3, type=float,
default=[0, 0, 0], help='Internal scattering param guesses.')
g.add_argument('--internal-scattering-lower', dest='lows', nargs=3,type=float,
default=[0, 0, 0], help='Internal scattering lower bounds.')
g.add_argument('--internal-scattering-upper', dest='ups', nargs=3, type=float,
default=[0.06, 0.06, 0.06],
help='Internal scattering upper bounds.')
g.add_argument('--legendre-b', dest='b', nargs=3, type=float,
default=[0.1, 0.1, 0.1],
help='Guesses for Legendre polynomial coefficient b.')
g.add_argument('--legendre-b-lower', dest='lowb', nargs=3, type=float,
default=[-1.7, -1.7, -1.7],
help='Lower bounds for Legendre polynomial coefficient b.')
g.add_argument('--legendre-b-upper', dest='upb', nargs=3, type=float,
default=[1.7, 1.7, 1.7],
help='Upper bounds for Legendre polynomial coefficient b.')
g.add_argument('--legendre-c', dest='c', nargs=3, type=float,
default=[0.3, 0.3, 0.3],
help='Guesses for Legendre polynomial coefficient c.')
g.add_argument('--legendre-c-lower', dest='lowc', nargs=3, type=float,
default=[-1, -1, -1],
help='Lower bounds for Legendre polynomial coefficient c.')
g.add_argument('--legendre-c-upper', dest='upc', nargs=3, type=float,
default=[1, 1, 1],
help='Upper bounds for Legendre polynomial coefficient c.')
g.add_argument('--filling-factor', dest='ff', nargs=3, type=float,
default=[0.00000000001, 0.00000000001, 0.00000000001],
help="""Filling factor guesses. If you cannot define it,
set it to 1e-17 but according to Hapke 2008,
absence of a good estimate this term can result in
k being off by as much as a factor of 2""")
g.add_argument('--k-lower', dest='lowk', type=float, default=0,
help='Lower bound for k.')
g.add_argument('--k-upper', dest='upk', type=float, default=.1,
help='Upper bound for k.')
ap.add_argument('--debug-plots', action='store_true',
help='Show plots for debugging purposes.')
return ap.parse_args()
def main():
args = parse_args()
print('Preparing variables')
HapkeModel = get_hapke_model(phase_fn=args.phase_function,
scatter=args.scatter_type)
hapke = HapkeModel(np.deg2rad(args.thetai), np.deg2rad(args.thetae),
args.n1, args.Bg)
files = dict(sml=args.small_file, med=args.medium_file, big=args.large_file)
params = {}
for i, key in enumerate(('file1', 'file2', 'file3')):
params[key] = (args.b[i], args.c[i], args.ff[i], args.s[i], args.D[i])
if hapke.needs_isow:
# initialize isow as the mean of a fixed range
specwave = analysis.loadmat_single(args.specwave_file).ravel()
calspec = analysis.loadmat_single(args.calspec_file).ravel()
isoind1, isoind2 = np.searchsorted(specwave, (0.5, 1.25))
hapke.set_isow(calspec[isoind1:isoind2].mean())
# section 1
print('Running section 1')
spectra = {}
for key, infile in files.items():
traj = analysis.loadmat_single(infile)
spectra[key] = analysis.preprocess_traj(traj, args.low, args.high, args.UV)
# sections 2, 3, 4
ks = {}
for key, traj in spectra.items():
print('Running sections 2,3,4 (MasterHapke1_PP: %s)' % key)
ks[key] = analysis.MasterHapke1_PP(hapke, traj, *params[key],
debug_plots=args.debug_plots)
# section 5 isn't worth porting
print('Skipping section 5')
# section 6: iterative minimizations
print('Running section 6 (MasterHapke2_PP)')
if hapke.needs_isow:
specwave, calspec = analysis.prepare_spectrum(specwave, calspec, args.UV,
args.high)
hapke.set_isow(calspec)
# use the medium-grain k as an initial guess
k = ks['file2']
# XXX: this takes too long, skip it
# guesses = np.concatenate((args.b, args.c, args.s, args.D, k))
# lb = np.concatenate((args.lowb, args.lowc, args.lows, args.lowD,
# np.zeros_like(k) + args.lowk))
# ub = np.concatenate((args.upb, args.upc, args.ups, args.upD,
# np.zeros_like(k) + args.upk))
# solutions = analysis.MasterHapke2_PP(hapke, spectra, guesses, lb, ub,
# args.ff, tr_solver='lsmr', verbose=2)
# section 7/8: graphs the parameters from the previous section
if args.debug_plots:
# print 'Running sections 7,8 (plotting %d solutions)' % len(solutions)
# see HapkeEval1_PP.m
# plot initial guesses -> solved values for b, c, s, D, and k
# TODO
# see HapkeEval3_PP.m
# plot given reflectances (spectra) vs solved rcs
pass
# section 9: add in your MIR data
# If you do not have MIR data (not recommended), you can skip this step.
# If you do have MIR data, use the DISPERSION programs on the website to get
# k data for your sample through the MIR.
wave = spectra['file2'][:,0]
if all(os.path.exists(f) for f in (args.mir_dispersion_k,
args.mir_dispersion_v)):
print('Running section 9 (MasterKcombine)')
combined = analysis.MasterKcombine(args.mir_dispersion_k,
args.mir_dispersion_v, wave, k)
if args.debug_plots:
plt.figure()
plt.plot(10000/combined[:,0], combined[:,1])
plt.title('MasterKcombine')
else:
print('Skipping section 9 (MasterKcombine): MIR data not found')
combined = np.column_stack((10000/wave, k))
# section 10: singly subtractive Kramers Kronig calculation
print('Running section 10 (MasterSSKK)')
res = analysis.MasterSSKK(combined, args.n1, args.anchor)
if args.debug_plots:
fig, ax = plt.subplots()
ax.plot(10000/res[:,0], res[:,1])
ax.set_xlabel('Wavelength (um)')
ax.set_ylabel('n')
if args.debug_plots:
plt.show()
if __name__ == '__main__':
main()