-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmodel.py
127 lines (91 loc) · 3.56 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.autograd import Variable
class FHDR(nn.Module):
def __init__(self, iteration_count):
super(FHDR, self).__init__()
print("FHDR model initialised")
self.iteration_count = iteration_count
self.reflect_pad = nn.ReflectionPad2d(1)
self.feb1 = nn.Conv2d(3, 64, kernel_size=3, padding=0)
self.feb2 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.feedback_block = FeedbackBlock()
self.hrb1 = nn.Conv2d(64, 64, kernel_size=3, padding=1)
self.hrb2 = nn.Conv2d(64, 3, kernel_size=3, padding=0)
self.tanh = nn.Tanh()
def forward(self, input):
outs = []
feb1 = F.relu(self.feb1(self.reflect_pad(input)))
feb2 = F.relu(self.feb2(feb1))
for i in range(self.iteration_count):
fb_out = self.feedback_block(feb2)
FDF = fb_out + feb1
hrb1 = F.relu(self.hrb1(FDF))
out = self.hrb2(self.reflect_pad(hrb1))
out = self.tanh(out)
outs.append(out)
return outs
class FeedbackBlock(nn.Module):
def __init__(self):
super(FeedbackBlock, self).__init__()
self.compress_in = nn.Conv2d(128, 64, kernel_size=1, padding=0)
self.DRDB1 = DilatedResidualDenseBlock()
self.DRDB2 = DilatedResidualDenseBlock()
self.DRDB3 = DilatedResidualDenseBlock()
self.last_hidden = None
self.GFF_3x3 = nn.Conv2d(64, 64, kernel_size=3, padding=1, bias=True)
self.should_reset = True
def forward(self, x):
if self.should_reset:
self.last_hidden = torch.zeros(x.size()).cuda()
self.last_hidden.copy_(x)
self.should_reset = False
out1 = torch.cat((x, self.last_hidden), dim=1)
out2 = self.compress_in(out1)
out3 = self.DRDB1(out2)
out4 = self.DRDB2(out3)
out5 = self.DRDB3(out4)
out = F.relu(self.GFF_3x3(out5))
self.last_hidden = out
self.last_hidden = Variable(self.last_hidden.data)
return out
class DilatedResidualDenseBlock(nn.Module):
def __init__(self, nDenselayer=4, growthRate=32):
super(DilatedResidualDenseBlock, self).__init__()
nChannels_ = 64
modules = []
for i in range(nDenselayer):
modules.append(make_dense(nChannels_, growthRate))
nChannels_ += growthRate
self.dense_layers = nn.Sequential(*modules)
self.should_reset = True
self.compress = nn.Conv2d(128, 64, kernel_size=1, stride=1, padding=0)
self.conv_1x1 = nn.Conv2d(nChannels_, 64, kernel_size=1, padding=0, bias=False)
def forward(self, x):
if self.should_reset:
self.last_hidden = torch.zeros(x.size()).cuda()
self.last_hidden.copy_(x)
self.should_reset = False
cat = torch.cat((x, self.last_hidden), dim=1)
out = self.compress(cat)
out = self.dense_layers(out)
out = self.conv_1x1(out)
self.last_hidden = out
self.last_hidden = Variable(out.data)
return out
class make_dense(nn.Module):
def __init__(self, nChannels, growthRate, kernel_size=3):
super(make_dense, self).__init__()
self.conv = nn.Conv2d(
nChannels,
growthRate,
kernel_size=kernel_size,
padding=(kernel_size - 1),
bias=False,
dilation=2,
)
def forward(self, x):
out = F.relu(self.conv(x))
out = torch.cat((x, out), 1)
return out