-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathtrain_precomputed.py
158 lines (127 loc) · 5.55 KB
/
train_precomputed.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
import torch
import time
import os
import sys
from tensorboardX import SummaryWriter
import pandas as pd
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
from torch import nn
import numpy as np
from birdsong.datasets.tools.sampling import upsample_df
from birdsong.datasets.tools.augmentation import SoundscapeNoise
from birdsong.datasets.tools.enhancement import Exponent
from birdsong.datasets.sequential import SpectralDataset
from birdsong.training import train, evaluate, logger
from birdsong.training.conf_mat import plot_confusion_matrix
if 'HOSTNAME' in os.environ:
# script runs on server
INPUT_DIR = '/storage/step1_slices/'
TRAIN = pd.read_csv('mel_slices_train.csv')
TEST = pd.read_csv('mel_slices_test.csv')
else:
# script runs locally
INPUT_DIR = 'storage/signal_slices'
TRAIN = pd.read_csv('storage/top100_train.csv')
TEST = pd.read_csv('storage/top100_val.csv')
FILE_TYPE = TRAIN.path.iloc[0].split('.')[-1]
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
PIN = torch.cuda.is_available()
print(f'Training on {DEVICE}')
def update_lr(optimizer, epoch, start_lr, decay):
lr = start_lr * ((1-decay) ** (1 + epoch))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
print('Drop Learning Rate to ', lr)
def main(config_file):
# read from config
local_config = __import__(config_file)
model_name = local_config.INPUTS['MODEL']
model = getattr(__import__('birdsong.models',
fromlist=[model_name]), model_name)
batch_size = local_config.INPUTS['BATCHSIZE']
optimizer_name = local_config.INPUTS['OPTIMIZER']
optimizer = getattr(__import__('torch.optim', fromlist=[optimizer_name]), optimizer_name)
num_epochs = local_config.INPUTS['EPOCHS']
no_classes = local_config.INPUTS['CLASSES']
learning_rate = local_config.INPUTS['LR']
# logging
start_time = time.time()
date = time.strftime('%d-%m-%Y-%H-%M-%S', time.localtime())
log_path = f'./birdsong/run_log/{model_name}_{date}'
state_fname, log_fname, summ_tensor_board = logger.create_log(log_path)
writer = SummaryWriter(str(summ_tensor_board))
# Enhancement
enh = None #Exponent(0.17)
# Augmentation
aug = SoundscapeNoise('storage/noise_slices', scaling=0.4)
# Datasets and Dataloaders
ds_train = SpectralDataset(
TRAIN, INPUT_DIR, enhancement_func=enh, augmentation_func=aug)
ds_test = SpectralDataset(TEST, INPUT_DIR, enhancement_func=enh)
dl_train = DataLoader(ds_train, batch_size,
num_workers=4, pin_memory=PIN, shuffle=True)
dl_test = DataLoader(ds_test, batch_size, num_workers=4,
pin_memory=PIN, shuffle=True)
print('Dataloaders initialized')
# Model
time_axis = ds_test.shape[1]
freq_axis = ds_test.shape[0]
net = model(time_axis=time_axis, freq_axis=freq_axis,
no_classes=no_classes)
criterion = nn.CrossEntropyLoss()
optimizer = optimizer(net.parameters(), lr=learning_rate)
# Logging general run information:
info = f""" INFO: \n
File type: {FILE_TYPE} \n
Optimizer: {optimizer_name} \n
Batch Size: {batch_size} \n
Classes': {no_classes} \n
Enhancement: {ds_train.enhancement_func.__repr__()} \n
Augmentation: {ds_train.augmentation_func.__repr__()} \n
Supposed to run for: {num_epochs} \n
Date: {date}"""
writer.add_text('Info: ', info)
# local vars
best_acc = 0
for epoch in range(num_epochs):
train(net, dl_train, epoch, optimizer, criterion, DEVICE)
train_stats, train_preds = evaluate(
net, dl_train, criterion, no_classes, DEVICE)
print(
f'Training: Loss: {train_stats[0]:.5f}, Acc: {train_stats[1]:.5f}, Top 5: {train_stats[2]:.5f}')
test_stats, test_preds = evaluate(
net, dl_test, criterion, no_classes, DEVICE)
print(
f'Validation: Loss: {test_stats[0]:.5f}, Acc: {test_stats[1]:.5f}, Top 5: {test_stats[2]:.5f}')
is_best = test_stats[1] > best_acc
best_acc = max(test_stats[1], best_acc)
print('Best Accuracy: {:.5f}'.format(best_acc))
logger.save_checkpoint({
'epoch': epoch + 1,
'state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'best_accuracy': best_acc,
}, is_best, filename=state_fname)
# Store confusion matrix every 5 epochs or at the end of training
if epoch%5 == 0 or epoch == num_epochs - 1:
cm_train = plot_confusion_matrix(train_preds[0], train_preds[1], np.arange(no_classes), normalize=True)
cm_val = plot_confusion_matrix(test_preds[0], test_preds[1], np.arange(no_classes), normalize=True)
writer.add_figure('Training', cm_train, epoch)
writer.add_figure('Validation', cm_val, epoch)
logger.write_summary(writer, epoch, train_stats, test_stats)
logger.dump_log_txt(date, start_time, local_config,
train_stats, test_stats, best_acc, epoch+1, log_fname)
# LR schedule
update_lr(optimizer, epoch, learning_rate, 0.05)
writer.close()
print('Finished Training')
if __name__ == "__main__":
if len(sys.argv) == 1:
print('usage: %s config_file' % os.path.basename(sys.argv[0]))
sys.exit(2)
CONFIG = os.path.basename(sys.argv[1])
if CONFIG[-3:] == ".py":
CONFIG = CONFIG[:-3]
main(CONFIG)