-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfit.py
178 lines (130 loc) · 6.05 KB
/
fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
"""
NILUT: Conditional Neural Implicit 3D Lookup Tables for Image Enhancement
https://github.com/mv-lab/nilut
Fit a complete 3D LUT into a simple NN.
"""
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
import gc
from collections import defaultdict
import argparse
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
use_amp = True
scaler = torch.cuda.amp.GradScaler(enabled=use_amp)
start_time = None
# Import NILUT utils
from utils import start_timer, end_timer_and_print, clean_mem
from utils import load_img, save_rgb, plot_all, pt_psnr, np_psnr, deltae_dist, count_parameters
from dataloader import LUTFitting, MIT5KData
from models.archs import SIREN, NILUT
class NILUT(nn.Module):
"""
Simple residual coordinate-based neural network for fitting 3D LUTs
Official code: https://github.com/mv-lab/nilut
"""
def __init__(self, in_features=3, hidden_features=256, hidden_layers=3, out_features=3, res=True):
super().__init__()
self.res = res
self.net = []
self.net.append(nn.Linear(in_features, hidden_features))
self.net.append(nn.ReLU())
for _ in range(hidden_layers):
self.net.append(nn.Linear(hidden_features, hidden_features))
self.net.append(nn.Tanh())
self.net.append(nn.Linear(hidden_features, out_features))
if not self.res:
self.net.append(torch.nn.Sigmoid())
self.net = nn.Sequential(*self.net)
def forward(self, intensity):
output = self.net(intensity)
if self.res:
output = output + intensity
output = torch.clamp(output, 0.,1.)
return output, intensity
def fit(lut_model, total_steps, model_input, ground_truth, img_size, opt, verbose=200):
"""
Simple training loop.
"""
start_timer()
metrics = defaultdict(list)
print (f"\n** Start training for {total_steps} iterations\n")
for step in range(total_steps):
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=use_amp):
model_output, _ = lut_model(model_input)
# loss = torch.mean((model_output - ground_truth)**2)
loss = torch.mean(torch.abs(model_output - ground_truth)) # more stable than L2
_psnr = pt_psnr(ground_truth,model_output).item()
metrics['mse'].append(loss.item())
metrics['psnr'].append(_psnr)
if (step % verbose)==0:
print (f">> Step {step} , loss={loss}, psnr={_psnr}")
scaler.scale(loss).backward()
scaler.step(opt)
scaler.update()
opt.zero_grad()
plt.plot(metrics['psnr'])
plt.title("PSNR Evolution")
plt.show()
print ("\n**Evaluate and get performance metrics\n")
eval(model_input, model_output, ground_truth, img_size)
torch.save(lut_model.state_dict(), f"3dlut.pt")
clean_mem()
def eval(model_input, model_output, ground_truth, img_size):
"""
Get performance metrics PSNR and DeltaE for the RGB transformation.
"""
original_inp = model_input.cpu().view(img_size[0],img_size[1],3).numpy().astype(np.float32)
np_out = model_output.cpu().view(img_size[0],img_size[1],3).detach().numpy().astype(np.float32)
np_gt = ground_truth.cpu().view(img_size[0],img_size[1],3).detach().numpy().astype(np.float32)
np_diff = np.abs(np_gt - np_out)
psnr = np_psnr(np_gt, np_out)
deltae = deltae_dist(np_gt, np_out)
print(f"Final metrics >> PSNR={psnr}, DeltaE={deltae} --- min error {np.min(np_diff)}, max error {np.max(np_diff)}")
plot_all([original_inp, np_out, np_gt, np_diff*10], figsize=(16,8))
save_rgb(original_inp, f"results/inp.png")
save_rgb(np_out, f"results/out.png")
save_rgb(np_gt , f"results/gt.png")
def main(inp_path, out_path, total_steps, lut_size):
"""
Fit a professional 3D LUT into a simple coordinate-based MLP.
Complete tutorial at: https://github.com/mv-lab/nilut
- inp_path: Input RGB map as a hald image
- out_path: Enhanced RGB map as a hald image, after using the desired 3D LUT
"""
torch.cuda.empty_cache()
gc.collect()
print (f"Start NILUT {lut_size} fitting with")
print ("Input hald image:", inp_path)
print ("Target hald image:", out_path)
# Define the dataloader
lut_images = LUTFitting(inp_path, out_path)
dataloader = DataLoader(lut_images, batch_size=1, pin_memory=True, num_workers=0)
img_size = lut_images.shape
print ("\nDataloader ready", img_size)
# Define the model
lut_model = NILUT(in_features=3, out_features=3, hidden_features=lut_size[0], hidden_layers=lut_size[1])
lut_model.cuda()
opt = torch.optim.Adam(lr=1e-3, params=lut_model.parameters())
print (f"\nCreated NILUT model {lut_size} -- params={count_parameters(lut_model)}")
# Load in memory the input and target hald images
model_input_cpu, ground_truth_cpu = next(iter(dataloader))
model_input, ground_truth = model_input_cpu.cuda(), ground_truth_cpu.cuda()
print ("Input/Output shapes", model_input.shape, ground_truth.shape)
lut_model.train()
fit(lut_model, total_steps, model_input, ground_truth, img_size, opt)
parser = argparse.ArgumentParser(description='NILUT fitting')
parser.add_argument("--input", help="Input RGB map as a hald image", default="", type=str)
parser.add_argument("--target", help="Enhanced RGB map as a hald image, after using the desired 3D LUT", default="", type=str)
parser.add_argument("--steps", help="Number of optimizaation steps", default=1000, type=int)
parser.add_argument("--units", help="NILUT MLP architecture: number of neurons", default=128, type=int)
parser.add_argument("--layers", help="NILUT MLP architecture: number of layers", default=2, type=int)
if __name__ == "__main__":
args = parser.parse_args()
main(inp_path=args.input,
out_path=args.target,
total_steps=args.steps,
lut_size=(args.units, args.layers))