-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathkeras_layer.py
134 lines (98 loc) · 3.44 KB
/
keras_layer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
'''
Making our own custom Keras Layers
Code Source:
Documentation
https://keras.io/layers/writing-your-own-keras-layers/
CNN with Keras
https://www.kaggle.com/moghazy/guide-to-cnns-with-data-augmentation-keras?fbclid=IwAR1F8W5KumYggRCsd20-1gEEFDMscmWuAO_yWWMdIJD1QXjybFmMoibTtR4
Resnet Based from:
https://github.com/raghakot/keras-resnet/blob/master/resnet.py?fbclid=IwAR2YfX6TO1HXrPcFDLNXuPJOnUBLFDi36hmErRB_T7DOoIY-z3RBVXJf9RU
'''
'''
Library From Documentation
'''
from keras import backend as K
from keras.layers import Layer
'''
Library From GitHub
'''
from __future__ import division
from keras.models import Model
from keras.layers import ( #redundant?
Input,
Activation,
Dense,
Flatten
)
from keras.layers.convolutional import (
Conv2D,
MaxPooling2D,
AveragePooling2D
)
from keras.layers.merge import add
from keras.layers.normalization import BatchNormalization
from keras.regularizers import 12 #number is off
'''
Custom Layer with single value identical to source.
e.g.
x = single_layer()
'''
class single_layer(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(single_layer, self).__init__(**kwargs)
def build(self, input_shape):
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[1], self.output_dim),
initializer='uniform',
trainable=True)
super(single_layer, self).build(input_shape)
def call(self, x):
return K.dot(x, self.kernel)
def compute_output_shape(self, input_shape):
return (input_shape[0], self.output_dim)
'''
Layer with Two Values
e.g.
double_layer()
'''
class double_layer(Layer):
def __init__(self, output_dim, **kwargs):
self.output_dim = output_dim
super(double_layer, self).__init__(**kwargs)
def build(self, input_shape):
assert isinstance(input_shape, list)
self.kernel = self.add_weight(name='kernel',
shape=(input_shape[0][1], self.output_dim),
initializer='uniform',
trainable=True)
super(double_layer, self).build(input_shape)
def call(self, x):
assert isinstance(x, list)
a, b = x
return [K.dot(a, self.kernel) + b, K.mean(b, axis=-1)]
def compute_output_shape(self, input_shape):
assert isinstance(input_shape, list)
shape_a, shape_b = input_shape
return [(input_shape[0], self.output_dim), shape_b[:-1]]
'''
ResNet From GitHub
'''
def _bn_relu(input):
norm = BatchNormalization(axis=CHANNEL_AXIS)(input)
return Activation("relu")(norm)
def _conv_bn_relu(**conv_params):
filters = conv_params["filters"]
kernel_size = conv_params["kernel_size"]
strides = conv_parms.setdefault("strides", (1,1))
kernel_initializer = conv_params.setdefault("kernel_initializer", "he_normal")
padding = conv_params.setdefault("padding", "same")
kernel_regularizer = conv_parms.setdefault("kernel_regularizer", 12(1.e-4))
def f(input):
conv = Conv2D(filters=filters, kernel_size=kernel_size,
strides=strides, padding=padding,
kernel_initializer=kernelinitializer,
kernel_regularizer=kernel_regularizer)(input)
return _bn_relu(conv)
return f
# From _bn_relu_conv)