-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrculfhash.c
2046 lines (1851 loc) · 59.6 KB
/
rculfhash.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
* rculfhash.c
*
* Userspace RCU library - Lock-Free Resizable RCU Hash Table
*
* Copyright 2010-2011 - Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
* Copyright 2011 - Lai Jiangshan <laijs@cn.fujitsu.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
*/
/*
* Based on the following articles:
* - Ori Shalev and Nir Shavit. Split-ordered lists: Lock-free
* extensible hash tables. J. ACM 53, 3 (May 2006), 379-405.
* - Michael, M. M. High performance dynamic lock-free hash tables
* and list-based sets. In Proceedings of the fourteenth annual ACM
* symposium on Parallel algorithms and architectures, ACM Press,
* (2002), 73-82.
*
* Some specificities of this Lock-Free Resizable RCU Hash Table
* implementation:
*
* - RCU read-side critical section allows readers to perform hash
* table lookups, as well as traversals, and use the returned objects
* safely by allowing memory reclaim to take place only after a grace
* period.
* - Add and remove operations are lock-free, and do not need to
* allocate memory. They need to be executed within RCU read-side
* critical section to ensure the objects they read are valid and to
* deal with the cmpxchg ABA problem.
* - add and add_unique operations are supported. add_unique checks if
* the node key already exists in the hash table. It ensures not to
* populate a duplicate key if the node key already exists in the hash
* table.
* - The resize operation executes concurrently with
* add/add_unique/add_replace/remove/lookup/traversal.
* - Hash table nodes are contained within a split-ordered list. This
* list is ordered by incrementing reversed-bits-hash value.
* - An index of bucket nodes is kept. These bucket nodes are the hash
* table "buckets". These buckets are internal nodes that allow to
* perform a fast hash lookup, similarly to a skip list. These
* buckets are chained together in the split-ordered list, which
* allows recursive expansion by inserting new buckets between the
* existing buckets. The split-ordered list allows adding new buckets
* between existing buckets as the table needs to grow.
* - The resize operation for small tables only allows expanding the
* hash table. It is triggered automatically by detecting long chains
* in the add operation.
* - The resize operation for larger tables (and available through an
* API) allows both expanding and shrinking the hash table.
* - Split-counters are used to keep track of the number of
* nodes within the hash table for automatic resize triggering.
* - Resize operation initiated by long chain detection is executed by a
* call_rcu thread, which keeps lock-freedom of add and remove.
* - Resize operations are protected by a mutex.
* - The removal operation is split in two parts: first, a "removed"
* flag is set in the next pointer within the node to remove. Then,
* a "garbage collection" is performed in the bucket containing the
* removed node (from the start of the bucket up to the removed node).
* All encountered nodes with "removed" flag set in their next
* pointers are removed from the linked-list. If the cmpxchg used for
* removal fails (due to concurrent garbage-collection or concurrent
* add), we retry from the beginning of the bucket. This ensures that
* the node with "removed" flag set is removed from the hash table
* (not visible to lookups anymore) before the RCU read-side critical
* section held across removal ends. Furthermore, this ensures that
* the node with "removed" flag set is removed from the linked-list
* before its memory is reclaimed. After setting the "removal" flag,
* only the thread which removal is the first to set the "removal
* owner" flag (with an xchg) into a node's next pointer is considered
* to have succeeded its removal (and thus owns the node to reclaim).
* Because we garbage-collect starting from an invariant node (the
* start-of-bucket bucket node) up to the "removed" node (or find a
* reverse-hash that is higher), we are sure that a successful
* traversal of the chain leads to a chain that is present in the
* linked-list (the start node is never removed) and that it does not
* contain the "removed" node anymore, even if concurrent delete/add
* operations are changing the structure of the list concurrently.
* - The add operations perform garbage collection of buckets if they
* encounter nodes with removed flag set in the bucket where they want
* to add their new node. This ensures lock-freedom of add operation by
* helping the remover unlink nodes from the list rather than to wait
* for it do to so.
* - There are three memory backends for the hash table buckets: the
* "order table", the "chunks", and the "mmap".
* - These bucket containers contain a compact version of the hash table
* nodes.
* - The RCU "order table":
* - has a first level table indexed by log2(hash index) which is
* copied and expanded by the resize operation. This order table
* allows finding the "bucket node" tables.
* - There is one bucket node table per hash index order. The size of
* each bucket node table is half the number of hashes contained in
* this order (except for order 0).
* - The RCU "chunks" is best suited for close interaction with a page
* allocator. It uses a linear array as index to "chunks" containing
* each the same number of buckets.
* - The RCU "mmap" memory backend uses a single memory map to hold
* all buckets.
* - synchronize_rcu is used to garbage-collect the old bucket node table.
*
* Ordering Guarantees:
*
* To discuss these guarantees, we first define "read" operation as any
* of the the basic cds_lfht_lookup, cds_lfht_next_duplicate,
* cds_lfht_first, cds_lfht_next operation, as well as
* cds_lfht_add_unique (failure).
*
* We define "read traversal" operation as any of the following
* group of operations
* - cds_lfht_lookup followed by iteration with cds_lfht_next_duplicate
* (and/or cds_lfht_next, although less common).
* - cds_lfht_add_unique (failure) followed by iteration with
* cds_lfht_next_duplicate (and/or cds_lfht_next, although less
* common).
* - cds_lfht_first followed iteration with cds_lfht_next (and/or
* cds_lfht_next_duplicate, although less common).
*
* We define "write" operations as any of cds_lfht_add, cds_lfht_replace,
* cds_lfht_add_unique (success), cds_lfht_add_replace, cds_lfht_del.
*
* When cds_lfht_add_unique succeeds (returns the node passed as
* parameter), it acts as a "write" operation. When cds_lfht_add_unique
* fails (returns a node different from the one passed as parameter), it
* acts as a "read" operation. A cds_lfht_add_unique failure is a
* cds_lfht_lookup "read" operation, therefore, any ordering guarantee
* referring to "lookup" imply any of "lookup" or cds_lfht_add_unique
* (failure).
*
* We define "prior" and "later" node as nodes observable by reads and
* read traversals respectively before and after a write or sequence of
* write operations.
*
* Hash-table operations are often cascaded, for example, the pointer
* returned by a cds_lfht_lookup() might be passed to a cds_lfht_next(),
* whose return value might in turn be passed to another hash-table
* operation. This entire cascaded series of operations must be enclosed
* by a pair of matching rcu_read_lock() and rcu_read_unlock()
* operations.
*
* The following ordering guarantees are offered by this hash table:
*
* A.1) "read" after "write": if there is ordering between a write and a
* later read, then the read is guaranteed to see the write or some
* later write.
* A.2) "read traversal" after "write": given that there is dependency
* ordering between reads in a "read traversal", if there is
* ordering between a write and the first read of the traversal,
* then the "read traversal" is guaranteed to see the write or
* some later write.
* B.1) "write" after "read": if there is ordering between a read and a
* later write, then the read will never see the write.
* B.2) "write" after "read traversal": given that there is dependency
* ordering between reads in a "read traversal", if there is
* ordering between the last read of the traversal and a later
* write, then the "read traversal" will never see the write.
* C) "write" while "read traversal": if a write occurs during a "read
* traversal", the traversal may, or may not, see the write.
* D.1) "write" after "write": if there is ordering between a write and
* a later write, then the later write is guaranteed to see the
* effects of the first write.
* D.2) Concurrent "write" pairs: The system will assign an arbitrary
* order to any pair of concurrent conflicting writes.
* Non-conflicting writes (for example, to different keys) are
* unordered.
* E) If a grace period separates a "del" or "replace" operation
* and a subsequent operation, then that subsequent operation is
* guaranteed not to see the removed item.
* F) Uniqueness guarantee: given a hash table that does not contain
* duplicate items for a given key, there will only be one item in
* the hash table after an arbitrary sequence of add_unique and/or
* add_replace operations. Note, however, that a pair of
* concurrent read operations might well access two different items
* with that key.
* G.1) If a pair of lookups for a given key are ordered (e.g. by a
* memory barrier), then the second lookup will return the same
* node as the previous lookup, or some later node.
* G.2) A "read traversal" that starts after the end of a prior "read
* traversal" (ordered by memory barriers) is guaranteed to see the
* same nodes as the previous traversal, or some later nodes.
* G.3) Concurrent "read" pairs: concurrent reads are unordered. For
* example, if a pair of reads to the same key run concurrently
* with an insertion of that same key, the reads remain unordered
* regardless of their return values. In other words, you cannot
* rely on the values returned by the reads to deduce ordering.
*
* Progress guarantees:
*
* * Reads are wait-free. These operations always move forward in the
* hash table linked list, and this list has no loop.
* * Writes are lock-free. Any retry loop performed by a write operation
* is triggered by progress made within another update operation.
*
* Bucket node tables:
*
* hash table hash table the last all bucket node tables
* order size bucket node 0 1 2 3 4 5 6(index)
* table size
* 0 1 1 1
* 1 2 1 1 1
* 2 4 2 1 1 2
* 3 8 4 1 1 2 4
* 4 16 8 1 1 2 4 8
* 5 32 16 1 1 2 4 8 16
* 6 64 32 1 1 2 4 8 16 32
*
* When growing/shrinking, we only focus on the last bucket node table
* which size is (!order ? 1 : (1 << (order -1))).
*
* Example for growing/shrinking:
* grow hash table from order 5 to 6: init the index=6 bucket node table
* shrink hash table from order 6 to 5: fini the index=6 bucket node table
*
* A bit of ascii art explanation:
*
* The order index is the off-by-one compared to the actual power of 2
* because we use index 0 to deal with the 0 special-case.
*
* This shows the nodes for a small table ordered by reversed bits:
*
* bits reverse
* 0 000 000
* 4 100 001
* 2 010 010
* 6 110 011
* 1 001 100
* 5 101 101
* 3 011 110
* 7 111 111
*
* This shows the nodes in order of non-reversed bits, linked by
* reversed-bit order.
*
* order bits reverse
* 0 0 000 000
* 1 | 1 001 100 <-
* 2 | | 2 010 010 <- |
* | | | 3 011 110 | <- |
* 3 -> | | | 4 100 001 | |
* -> | | 5 101 101 |
* -> | 6 110 011
* -> 7 111 111
*/
#define _LGPL_SOURCE
#define _GNU_SOURCE
#include <stdlib.h>
#include <errno.h>
#include <assert.h>
#include <stdio.h>
#include <stdint.h>
#include <string.h>
#include <sched.h>
#include <unistd.h>
#include "config.h"
#include "compat-getcpu.h"
#include <urcu-pointer.h>
#include <urcu-call-rcu.h>
#include <urcu-flavor.h>
#include <urcu/arch.h>
#include <urcu/uatomic.h>
#include <urcu/compiler.h>
#include <urcu/rculfhash.h>
#include <rculfhash-internal.h>
#include <stdio.h>
#include <pthread.h>
/*
* Split-counters lazily update the global counter each 1024
* addition/removal. It automatically keeps track of resize required.
* We use the bucket length as indicator for need to expand for small
* tables and machines lacking per-cpu data support.
*/
#define COUNT_COMMIT_ORDER 10
#define DEFAULT_SPLIT_COUNT_MASK 0xFUL
#define CHAIN_LEN_TARGET 1
#define CHAIN_LEN_RESIZE_THRESHOLD 3
/*
* Define the minimum table size.
*/
#define MIN_TABLE_ORDER 0
#define MIN_TABLE_SIZE (1UL << MIN_TABLE_ORDER)
/*
* Minimum number of bucket nodes to touch per thread to parallelize grow/shrink.
*/
#define MIN_PARTITION_PER_THREAD_ORDER 12
#define MIN_PARTITION_PER_THREAD (1UL << MIN_PARTITION_PER_THREAD_ORDER)
/*
* The removed flag needs to be updated atomically with the pointer.
* It indicates that no node must attach to the node scheduled for
* removal, and that node garbage collection must be performed.
* The bucket flag does not require to be updated atomically with the
* pointer, but it is added as a pointer low bit flag to save space.
* The "removal owner" flag is used to detect which of the "del"
* operation that has set the "removed flag" gets to return the removed
* node to its caller. Note that the replace operation does not need to
* iteract with the "removal owner" flag, because it validates that
* the "removed" flag is not set before performing its cmpxchg.
*/
#define REMOVED_FLAG (1UL << 0)
#define BUCKET_FLAG (1UL << 1)
#define REMOVAL_OWNER_FLAG (1UL << 2)
#define FLAGS_MASK ((1UL << 3) - 1)
/* Value of the end pointer. Should not interact with flags. */
#define END_VALUE NULL
/*
* ht_items_count: Split-counters counting the number of node addition
* and removal in the table. Only used if the CDS_LFHT_ACCOUNTING flag
* is set at hash table creation.
*
* These are free-running counters, never reset to zero. They count the
* number of add/remove, and trigger every (1 << COUNT_COMMIT_ORDER)
* operations to update the global counter. We choose a power-of-2 value
* for the trigger to deal with 32 or 64-bit overflow of the counter.
*/
struct ht_items_count {
unsigned long add, del;
} __attribute__((aligned(CAA_CACHE_LINE_SIZE)));
/*
* rcu_resize_work: Contains arguments passed to RCU worker thread
* responsible for performing lazy resize.
*/
struct rcu_resize_work {
struct rcu_head head;
struct cds_lfht *ht;
};
/*
* partition_resize_work: Contains arguments passed to worker threads
* executing the hash table resize on partitions of the hash table
* assigned to each processor's worker thread.
*/
struct partition_resize_work {
pthread_t thread_id;
struct cds_lfht *ht;
unsigned long i, start, len;
void (*fct)(struct cds_lfht *ht, unsigned long i,
unsigned long start, unsigned long len);
};
/*
* Algorithm to reverse bits in a word by lookup table, extended to
* 64-bit words.
* Source:
* http://graphics.stanford.edu/~seander/bithacks.html#BitReverseTable
* Originally from Public Domain.
*/
static const uint8_t BitReverseTable256[256] =
{
#define R2(n) (n), (n) + 2*64, (n) + 1*64, (n) + 3*64
#define R4(n) R2(n), R2((n) + 2*16), R2((n) + 1*16), R2((n) + 3*16)
#define R6(n) R4(n), R4((n) + 2*4 ), R4((n) + 1*4 ), R4((n) + 3*4 )
R6(0), R6(2), R6(1), R6(3)
};
#undef R2
#undef R4
#undef R6
static
uint8_t bit_reverse_u8(uint8_t v)
{
return BitReverseTable256[v];
}
#if (CAA_BITS_PER_LONG == 32)
static
uint32_t bit_reverse_u32(uint32_t v)
{
return ((uint32_t) bit_reverse_u8(v) << 24) |
((uint32_t) bit_reverse_u8(v >> 8) << 16) |
((uint32_t) bit_reverse_u8(v >> 16) << 8) |
((uint32_t) bit_reverse_u8(v >> 24));
}
#else
static
uint64_t bit_reverse_u64(uint64_t v)
{
return ((uint64_t) bit_reverse_u8(v) << 56) |
((uint64_t) bit_reverse_u8(v >> 8) << 48) |
((uint64_t) bit_reverse_u8(v >> 16) << 40) |
((uint64_t) bit_reverse_u8(v >> 24) << 32) |
((uint64_t) bit_reverse_u8(v >> 32) << 24) |
((uint64_t) bit_reverse_u8(v >> 40) << 16) |
((uint64_t) bit_reverse_u8(v >> 48) << 8) |
((uint64_t) bit_reverse_u8(v >> 56));
}
#endif
static
unsigned long bit_reverse_ulong(unsigned long v)
{
#if (CAA_BITS_PER_LONG == 32)
return bit_reverse_u32(v);
#else
return bit_reverse_u64(v);
#endif
}
/*
* fls: returns the position of the most significant bit.
* Returns 0 if no bit is set, else returns the position of the most
* significant bit (from 1 to 32 on 32-bit, from 1 to 64 on 64-bit).
*/
#if defined(__i386) || defined(__x86_64)
static inline
unsigned int fls_u32(uint32_t x)
{
int r;
__asm__ ("bsrl %1,%0\n\t"
"jnz 1f\n\t"
"movl $-1,%0\n\t"
"1:\n\t"
: "=r" (r) : "rm" (x));
return r + 1;
}
#define HAS_FLS_U32
#endif
#if defined(__x86_64)
static inline
unsigned int fls_u64(uint64_t x)
{
long r;
__asm__ ("bsrq %1,%0\n\t"
"jnz 1f\n\t"
"movq $-1,%0\n\t"
"1:\n\t"
: "=r" (r) : "rm" (x));
return r + 1;
}
#define HAS_FLS_U64
#endif
#ifndef HAS_FLS_U64
static __attribute__((unused))
unsigned int fls_u64(uint64_t x)
{
unsigned int r = 64;
if (!x)
return 0;
if (!(x & 0xFFFFFFFF00000000ULL)) {
x <<= 32;
r -= 32;
}
if (!(x & 0xFFFF000000000000ULL)) {
x <<= 16;
r -= 16;
}
if (!(x & 0xFF00000000000000ULL)) {
x <<= 8;
r -= 8;
}
if (!(x & 0xF000000000000000ULL)) {
x <<= 4;
r -= 4;
}
if (!(x & 0xC000000000000000ULL)) {
x <<= 2;
r -= 2;
}
if (!(x & 0x8000000000000000ULL)) {
x <<= 1;
r -= 1;
}
return r;
}
#endif
#ifndef HAS_FLS_U32
static __attribute__((unused))
unsigned int fls_u32(uint32_t x)
{
unsigned int r = 32;
if (!x)
return 0;
if (!(x & 0xFFFF0000U)) {
x <<= 16;
r -= 16;
}
if (!(x & 0xFF000000U)) {
x <<= 8;
r -= 8;
}
if (!(x & 0xF0000000U)) {
x <<= 4;
r -= 4;
}
if (!(x & 0xC0000000U)) {
x <<= 2;
r -= 2;
}
if (!(x & 0x80000000U)) {
x <<= 1;
r -= 1;
}
return r;
}
#endif
unsigned int cds_lfht_fls_ulong(unsigned long x)
{
#if (CAA_BITS_PER_LONG == 32)
return fls_u32(x);
#else
return fls_u64(x);
#endif
}
/*
* Return the minimum order for which x <= (1UL << order).
* Return -1 if x is 0.
*/
int cds_lfht_get_count_order_u32(uint32_t x)
{
if (!x)
return -1;
return fls_u32(x - 1);
}
/*
* Return the minimum order for which x <= (1UL << order).
* Return -1 if x is 0.
*/
int cds_lfht_get_count_order_ulong(unsigned long x)
{
if (!x)
return -1;
return cds_lfht_fls_ulong(x - 1);
}
static
void cds_lfht_resize_lazy_grow(struct cds_lfht *ht, unsigned long size, int growth);
static
void cds_lfht_resize_lazy_count(struct cds_lfht *ht, unsigned long size,
unsigned long count);
static long nr_cpus_mask = -1;
static long split_count_mask = -1;
static int split_count_order = -1;
#if defined(HAVE_SYSCONF)
static void ht_init_nr_cpus_mask(void)
{
long maxcpus;
maxcpus = sysconf(_SC_NPROCESSORS_CONF);
if (maxcpus <= 0) {
nr_cpus_mask = -2;
return;
}
/*
* round up number of CPUs to next power of two, so we
* can use & for modulo.
*/
maxcpus = 1UL << cds_lfht_get_count_order_ulong(maxcpus);
nr_cpus_mask = maxcpus - 1;
}
#else /* #if defined(HAVE_SYSCONF) */
static void ht_init_nr_cpus_mask(void)
{
nr_cpus_mask = -2;
}
#endif /* #else #if defined(HAVE_SYSCONF) */
static
void alloc_split_items_count(struct cds_lfht *ht)
{
if (nr_cpus_mask == -1) {
ht_init_nr_cpus_mask();
if (nr_cpus_mask < 0)
split_count_mask = DEFAULT_SPLIT_COUNT_MASK;
else
split_count_mask = nr_cpus_mask;
split_count_order =
cds_lfht_get_count_order_ulong(split_count_mask + 1);
}
assert(split_count_mask >= 0);
if (ht->flags & CDS_LFHT_ACCOUNTING) {
ht->split_count = calloc(split_count_mask + 1,
sizeof(struct ht_items_count));
assert(ht->split_count);
} else {
ht->split_count = NULL;
}
}
static
void free_split_items_count(struct cds_lfht *ht)
{
poison_free(ht->split_count);
}
static
int ht_get_split_count_index(unsigned long hash)
{
int cpu;
assert(split_count_mask >= 0);
cpu = urcu_sched_getcpu();
if (caa_unlikely(cpu < 0))
return hash & split_count_mask;
else
return cpu & split_count_mask;
}
static
void ht_count_add(struct cds_lfht *ht, unsigned long size, unsigned long hash)
{
unsigned long split_count;
int index;
long count;
if (caa_unlikely(!ht->split_count))
return;
index = ht_get_split_count_index(hash);
split_count = uatomic_add_return(&ht->split_count[index].add, 1);
if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
return;
/* Only if number of add multiple of 1UL << COUNT_COMMIT_ORDER */
dbg_printf("add split count %lu\n", split_count);
count = uatomic_add_return(&ht->count,
1UL << COUNT_COMMIT_ORDER);
if (caa_likely(count & (count - 1)))
return;
/* Only if global count is power of 2 */
if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) < size)
return;
dbg_printf("add set global %ld\n", count);
cds_lfht_resize_lazy_count(ht, size,
count >> (CHAIN_LEN_TARGET - 1));
}
static
void ht_count_del(struct cds_lfht *ht, unsigned long size, unsigned long hash)
{
unsigned long split_count;
int index;
long count;
if (caa_unlikely(!ht->split_count))
return;
index = ht_get_split_count_index(hash);
split_count = uatomic_add_return(&ht->split_count[index].del, 1);
if (caa_likely(split_count & ((1UL << COUNT_COMMIT_ORDER) - 1)))
return;
/* Only if number of deletes multiple of 1UL << COUNT_COMMIT_ORDER */
dbg_printf("del split count %lu\n", split_count);
count = uatomic_add_return(&ht->count,
-(1UL << COUNT_COMMIT_ORDER));
if (caa_likely(count & (count - 1)))
return;
/* Only if global count is power of 2 */
if ((count >> CHAIN_LEN_RESIZE_THRESHOLD) >= size)
return;
dbg_printf("del set global %ld\n", count);
/*
* Don't shrink table if the number of nodes is below a
* certain threshold.
*/
if (count < (1UL << COUNT_COMMIT_ORDER) * (split_count_mask + 1))
return;
cds_lfht_resize_lazy_count(ht, size,
count >> (CHAIN_LEN_TARGET - 1));
}
static
void check_resize(struct cds_lfht *ht, unsigned long size, uint32_t chain_len)
{
unsigned long count;
if (!(ht->flags & CDS_LFHT_AUTO_RESIZE))
return;
count = uatomic_read(&ht->count);
/*
* Use bucket-local length for small table expand and for
* environments lacking per-cpu data support.
*/
if (count >= (1UL << (COUNT_COMMIT_ORDER + split_count_order)))
return;
if (chain_len > 100)
dbg_printf("WARNING: large chain length: %u.\n",
chain_len);
if (chain_len >= CHAIN_LEN_RESIZE_THRESHOLD) {
int growth;
/*
* Ideal growth calculated based on chain length.
*/
growth = cds_lfht_get_count_order_u32(chain_len
- (CHAIN_LEN_TARGET - 1));
if ((ht->flags & CDS_LFHT_ACCOUNTING)
&& (size << growth)
>= (1UL << (COUNT_COMMIT_ORDER
+ split_count_order))) {
/*
* If ideal growth expands the hash table size
* beyond the "small hash table" sizes, use the
* maximum small hash table size to attempt
* expanding the hash table. This only applies
* when node accounting is available, otherwise
* the chain length is used to expand the hash
* table in every case.
*/
growth = COUNT_COMMIT_ORDER + split_count_order
- cds_lfht_get_count_order_ulong(size);
if (growth <= 0)
return;
}
cds_lfht_resize_lazy_grow(ht, size, growth);
}
}
static
struct cds_lfht_node *clear_flag(struct cds_lfht_node *node)
{
return (struct cds_lfht_node *) (((unsigned long) node) & ~FLAGS_MASK);
}
static
int is_removed(struct cds_lfht_node *node)
{
return ((unsigned long) node) & REMOVED_FLAG;
}
static
int is_bucket(struct cds_lfht_node *node)
{
return ((unsigned long) node) & BUCKET_FLAG;
}
static
struct cds_lfht_node *flag_bucket(struct cds_lfht_node *node)
{
return (struct cds_lfht_node *) (((unsigned long) node) | BUCKET_FLAG);
}
static
int is_removal_owner(struct cds_lfht_node *node)
{
return ((unsigned long) node) & REMOVAL_OWNER_FLAG;
}
static
struct cds_lfht_node *flag_removal_owner(struct cds_lfht_node *node)
{
return (struct cds_lfht_node *) (((unsigned long) node) | REMOVAL_OWNER_FLAG);
}
static
struct cds_lfht_node *flag_removed_or_removal_owner(struct cds_lfht_node *node)
{
return (struct cds_lfht_node *) (((unsigned long) node) | REMOVED_FLAG | REMOVAL_OWNER_FLAG);
}
static
struct cds_lfht_node *get_end(void)
{
return (struct cds_lfht_node *) END_VALUE;
}
static
int is_end(struct cds_lfht_node *node)
{
return clear_flag(node) == (struct cds_lfht_node *) END_VALUE;
}
static
unsigned long _uatomic_xchg_monotonic_increase(unsigned long *ptr,
unsigned long v)
{
unsigned long old1, old2;
old1 = uatomic_read(ptr);
do {
old2 = old1;
if (old2 >= v)
return old2;
} while ((old1 = uatomic_cmpxchg(ptr, old2, v)) != old2);
return old2;
}
static
void cds_lfht_alloc_bucket_table(struct cds_lfht *ht, unsigned long order)
{
return ht->mm->alloc_bucket_table(ht, order);
}
/*
* cds_lfht_free_bucket_table() should be called with decreasing order.
* When cds_lfht_free_bucket_table(0) is called, it means the whole
* lfht is destroyed.
*/
static
void cds_lfht_free_bucket_table(struct cds_lfht *ht, unsigned long order)
{
return ht->mm->free_bucket_table(ht, order);
}
static inline
struct cds_lfht_node *bucket_at(struct cds_lfht *ht, unsigned long index)
{
return ht->bucket_at(ht, index);
}
static inline
struct cds_lfht_node *lookup_bucket(struct cds_lfht *ht, unsigned long size,
unsigned long hash)
{
assert(size > 0);
return bucket_at(ht, hash & (size - 1));
}
/*
* Remove all logically deleted nodes from a bucket up to a certain node key.
*/
static
void _cds_lfht_gc_bucket(struct cds_lfht_node *bucket, struct cds_lfht_node *node)
{
struct cds_lfht_node *iter_prev, *iter, *next, *new_next;
assert(!is_bucket(bucket));
assert(!is_removed(bucket));
assert(!is_removal_owner(bucket));
assert(!is_bucket(node));
assert(!is_removed(node));
assert(!is_removal_owner(node));
for (;;) {
iter_prev = bucket;
/* We can always skip the bucket node initially */
iter = rcu_dereference(iter_prev->next);
assert(!is_removed(iter));
assert(!is_removal_owner(iter));
assert(iter_prev->reverse_hash <= node->reverse_hash);
/*
* We should never be called with bucket (start of chain)
* and logically removed node (end of path compression
* marker) being the actual same node. This would be a
* bug in the algorithm implementation.
*/
assert(bucket != node);
for (;;) {
if (caa_unlikely(is_end(iter)))
return;
if (caa_likely(clear_flag(iter)->reverse_hash > node->reverse_hash))
return;
next = rcu_dereference(clear_flag(iter)->next);
if (caa_likely(is_removed(next)))
break;
iter_prev = clear_flag(iter);
iter = next;
}
assert(!is_removed(iter));
assert(!is_removal_owner(iter));
if (is_bucket(iter))
new_next = flag_bucket(clear_flag(next));
else
new_next = clear_flag(next);
(void) uatomic_cmpxchg(&iter_prev->next, iter, new_next);
}
}
static
int _cds_lfht_replace(struct cds_lfht *ht, unsigned long size,
struct cds_lfht_node *old_node,
struct cds_lfht_node *old_next,
struct cds_lfht_node *new_node)
{
struct cds_lfht_node *bucket, *ret_next;
if (!old_node) /* Return -ENOENT if asked to replace NULL node */
return -ENOENT;
assert(!is_removed(old_node));
assert(!is_removal_owner(old_node));
assert(!is_bucket(old_node));
assert(!is_removed(new_node));
assert(!is_removal_owner(new_node));
assert(!is_bucket(new_node));
assert(new_node != old_node);
for (;;) {
/* Insert after node to be replaced */
if (is_removed(old_next)) {
/*
* Too late, the old node has been removed under us
* between lookup and replace. Fail.
*/
return -ENOENT;
}
assert(old_next == clear_flag(old_next));
assert(new_node != old_next);
/*
* REMOVAL_OWNER flag is _NEVER_ set before the REMOVED
* flag. It is either set atomically at the same time
* (replace) or after (del).
*/
assert(!is_removal_owner(old_next));
new_node->next = old_next;
/*
* Here is the whole trick for lock-free replace: we add
* the replacement node _after_ the node we want to
* replace by atomically setting its next pointer at the
* same time we set its removal flag. Given that
* the lookups/get next use an iterator aware of the
* next pointer, they will either skip the old node due
* to the removal flag and see the new node, or use
* the old node, but will not see the new one.
* This is a replacement of a node with another node
* that has the same value: we are therefore not
* removing a value from the hash table. We set both the
* REMOVED and REMOVAL_OWNER flags atomically so we own
* the node after successful cmpxchg.
*/
ret_next = uatomic_cmpxchg(&old_node->next,
old_next, flag_removed_or_removal_owner(new_node));
if (ret_next == old_next)
break; /* We performed the replacement. */
old_next = ret_next;
}
/*
* Ensure that the old node is not visible to readers anymore:
* lookup for the node, and remove it (along with any other
* logically removed node) if found.
*/
bucket = lookup_bucket(ht, size, bit_reverse_ulong(old_node->reverse_hash));
_cds_lfht_gc_bucket(bucket, new_node);
assert(is_removed(CMM_LOAD_SHARED(old_node->next)));
return 0;
}
/*
* A non-NULL unique_ret pointer uses the "add unique" (or uniquify) add
* mode. A NULL unique_ret allows creation of duplicate keys.
*/
static
void _cds_lfht_add(struct cds_lfht *ht,
unsigned long hash,
cds_lfht_match_fct match,
const void *key,
unsigned long size,
struct cds_lfht_node *node,
struct cds_lfht_iter *unique_ret,
int bucket_flag)
{
struct cds_lfht_node *iter_prev, *iter, *next, *new_node, *new_next,
*return_node;
struct cds_lfht_node *bucket;
assert(!is_bucket(node));
assert(!is_removed(node));
assert(!is_removal_owner(node));
bucket = lookup_bucket(ht, size, hash);
for (;;) {
uint32_t chain_len = 0;
/*
* iter_prev points to the non-removed node prior to the
* insert location.
*/
iter_prev = bucket;
/* We can always skip the bucket node initially */
iter = rcu_dereference(iter_prev->next);
assert(iter_prev->reverse_hash <= node->reverse_hash);
for (;;) {