-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcovid_multiclass_app.py
51 lines (42 loc) · 1.61 KB
/
covid_multiclass_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import tensorflow
import streamlit as st
import cv2
from PIL import Image, ImageOps
import numpy as np
import efficientnet.tfkeras
from tensorflow.keras.models import load_model
# Load the trained model
model = tensorflow.keras.models.load_model('efficientnet_model.hdf5')
# Make the header for web app
st.write("""
# COVID Multiclass Image Prediction
"""
)
st.write("This is a simple image classification web app to predict COVID Multiclass CT Scans Image")
st.write("The type of Lungs CT Scan that can be predicted as follows: "
"Covid, Healthy, Others")
file = st.file_uploader("Please upload an image file", type=["jpg", "png"])
# processing function
def import_and_predict(image_data, model):
size = (224,224)
image = ImageOps.fit(image_data, size, Image.ANTIALIAS)
image = np.asarray(image)
img = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
img_resize = (cv2.resize(img, dsize=(224, 224), interpolation=cv2.INTER_CUBIC))/255.
img_reshape = img_resize[np.newaxis,...]
prediction = model.predict(img_reshape)
return prediction
if file is None:
st.text("Please upload an image file")
else:
image = Image.open(file)
st.image(image, use_column_width=True)
prediction = import_and_predict(image, model)
if np.argmax(prediction) == 0:
st.write("It has Covid!")
elif np.argmax(prediction) == 1:
st.write("It is Healthy!")
else:
st.write("It has others pulmonary directions!")
st.text("Probability (0: Covid, 1: Healthy, 2: Others")
st.write(prediction)