-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_model_parallel_v4.py
335 lines (301 loc) · 14.2 KB
/
train_model_parallel_v4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
## Add MKL config to safeguard against conflict of MKL's and joblib's parallelization
import os
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['OMP_NUM_THREADS'] = '1'
os.environ['MKL_DYNAMIC'] = 'FALSE'
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
import seaborn as sns
sns.set_context('poster')
sns.set_style('ticks')
matplotlib.rcParams['font.size'] = 9
matplotlib.rcParams['axes.labelsize'] = 9
matplotlib.rcParams['xtick.labelsize'] = 9
matplotlib.rcParams['ytick.labelsize'] = 9
matplotlib.rcParams['axes.titlesize'] = 9
matplotlib.rcParams['font.family'] = 'serif'
matplotlib.rcParams['savefig.dpi'] = 600
import pandas as pd
import numpy as np
from statsmodels.api import Logit
from joblib import Parallel, delayed
from joblib import load, dump
import eval_measures as ems
MODEL_VERSION = "v4"
MODEL_SUFFIX = "%s.last_author" % MODEL_VERSION
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("-v", "--version", default="v4", type=str,
help="Model version number")
parser.add_argument("-t", "--model-type", default="last_author", type=str,
help="Model type [last_author | first_author] or any other string")
args = parser.parse_args()
if args.version:
MODEL_VERSION = args.version
print "Model version number: %s" % MODEL_VERSION
if args.model_type:
MODEL_SUFFIX = "%s.%s" % (MODEL_VERSION, args.model_type)
print "Model suffix: %s" % MODEL_SUFFIX
from feature_data import feature_dict
def plot_prc(prc, ax, color="k", label="PRC"):
precision, recall = prc
ax.plot(recall, precision,marker="None", linestyle="-", color=color, label=label)
def get_all_eval_measures(predict, endog, include_prc=False):
measures = {}
pred_table = ems.cm(predict, endog)
measures["precision"] = ems.precision(pred_table)
measures["recall"] = ems.recall(pred_table)
measures["accuracy"] = ems.accuracy(pred_table)
measures["f_score"] = ems.fscore_measure(pred_table)
measures["rmse"] = ems.rmse(predict, endog)
measures["mae"] = ems.mae(predict, endog)
measures["auc"] = ems.auc(predict, endog)
tn, fp, fn, tp = map(float, pred_table.flatten()) # WRT to 1 as positive label
measures["tn"] = tn
measures["fn"] = fn
measures["fp"] = fp
measures["tp"] = tp
measures["tpr"] = tp * 1. / (tp + fn)
measures["fpr"] = fp * 1. / (fp + tn)
print "In eval measures function."
if include_prc:
print "Generating PRC AND ROC"
## Include the precision recall values
prc = ems.prc(predict, endog, float_precision=3)
measures["prc"] = prc
roc = ems.roc(predict, endog, float_precision=3)
measures["roc"] = roc
return measures
def model_fit(store_path, X_df_path, y_df_path,
feature_key="Gender", X_cols = [], testing=False, include_prc=False):
if testing:
# If testing the just print X and y columns
print store_path, X_df_path, y_df_path, feature_key, X_cols
return feature_key, ({"llf": 0.1}, "TEMP SUMMARY")
## Not testing. Fit the models and return the measures
print store_path, X_df_path, y_df_path, feature_key, X_cols
X = pd.read_hdf(store_path, key=X_df_path, columns=X_cols)
y = pd.read_hdf(store_path, key=y_df_path)
print "Created dataframes, feature_key=%s" % feature_key
print "X.shape = %s, y.shape = %s" % (X.shape, y.shape)
model = Logit(y,X)
res = model.fit()
predict = res.predict()
measures = get_all_eval_measures(predict, model.endog, include_prc=include_prc)
measures["llf"] = res.llf
measures["aic"] = res.aic
measures["bic"] = res.bic
measures["prsquared"] = res.prsquared
measures["df_model"] = res.df_model
return feature_key, (measures, res.summary2())
store_path, X_df_path, y_df_path = "out/Model.%s.h5" % MODEL_SUFFIX, "X", "y"
train_items = list(feature_dict.iteritems())
n_jobs = len(train_items)
results_full = []
TOP_FEATURES = ['Intercept']
y_feature_col = "is_self_cite[True]"
nrows, ncols = ((len(feature_dict)-len(TOP_FEATURES))/5) + 1, 5
stage_id = 0
include_prc = True
feature_colors = dict(zip(feature_dict.keys(),
sns.color_palette("cubehelix", len(feature_dict)))
)
if include_prc:
fig, ax = plt.subplots(nrows, ncols, sharex=True, sharey=True, figsize=(ncols*3, nrows*3))
fig1, ax1 = plt.subplots(nrows, ncols, sharex=True, sharey=True, figsize=(ncols*3, nrows*3))
print "Created figure with %s rows and %s columns" % (nrows, ncols)
ax = ax.flatten()
ax1 = ax1.flatten()
## Run the forward selection process
while True:
x_feature_cols = reduce(lambda x,y: x+y, map(lambda k: feature_dict[k], TOP_FEATURES))
## Generate feature ids to train on
train_items = list((k,v) for k,v in feature_dict.iteritems() if k not in TOP_FEATURES)
n_jobs = len(train_items)
if n_jobs < 1:
## If no more jobs to train then exit.
print "Finished with forward selection process.\nEnding."
break
## Fit the models
try:
results = Parallel(n_jobs=n_jobs, verbose=10,
temp_folder="./tmp")(delayed(model_fit)(store_path, X_df_path, y_df_path,
feature_key=k,
X_cols = x_feature_cols + v,
testing=False,
include_prc=include_prc) for k,v in train_items)
except (SystemError, MemoryError) as e:
## Fall back to sequential training
print "Falling back to sequential training"
results = []
for k,v in train_items:
r = model_fit(store_path, X_df_path, y_df_path,
feature_key=k,
X_cols = x_feature_cols + v,
testing=False,
include_prc=include_prc)
results.append(r)
## Sort the results based on log likelihood
results = sorted(results, key=lambda x: x[1][0]["llf"], reverse=True)
## Assign top feature from the current stage
tf = results[0][0]
TOP_FEATURES.append(tf)
print "Top feature in Stage %s: %s" % (stage_id+1, tf)
## Print all the models from the current stage
for k,(measures,summary) in results:
## Remove PRC from the dictionary
prc = measures.pop("prc", None)
roc = measures.pop("roc", None)
## Plot PRC curves
if include_prc and prc is not None:
plot_prc(prc, ax=ax[stage_id], color=feature_colors[k], label=k)
ax[stage_id].plot([measures["recall"]], [measures["precision"]],
marker="o", color=feature_colors[k], ms=20)
plot_prc(roc, ax=ax1[stage_id], color=feature_colors[k], label=k)
ax1[stage_id].plot([measures["fpr"]], [measures["tpr"]],
marker="o", color=feature_colors[k], ms=20)
print k, measures
print summary
## Add plot properties - line for opposite diagonal
if include_prc:
ax[stage_id].plot([0,1], [1,0], "--k", linewidth=1)
ax[stage_id].set_title("Stage %s: %s" % (stage_id+1, tf))
ax[stage_id].set_xlabel("Recall")
ax[stage_id].set_ylabel("Precision")
ax1[stage_id].plot([0,1], [0,1], "--k", linewidth=1)
ax1[stage_id].set_title("Stage %s: %s" % (stage_id+1, tf))
ax1[stage_id].set_xlabel("False Positive Rate")
ax1[stage_id].set_ylabel("True Positive Rate")
## Append the results to the results_full list
results_full.append(results)
## Print features by log likelihood for each stage
for i, (r, tf) in enumerate(zip(results_full, TOP_FEATURES[1:])):
print "\nStage %s: %s\n" % (i + 1, tf)
for k,(measures,summary) in r:
print "%s: %.4f" % (k, measures["llf"],),
print "\nTop feature in Stage %s: %s" % (stage_id+1, tf)
## Update stage id
stage_id += 1
## Add plot legend and save plot
if include_prc:
lgd = fig.legend(*ax[0].get_legend_handles_labels(), loc = 'upper center', bbox_to_anchor=(0.5,1.1), ncol=5, frameon=True, fancybox=True, prop={"size": 9})
fig.tight_layout()
fig.savefig("PRC_model.%s.pdf" % MODEL_SUFFIX, bbox_inches="tight", bbox_extra_artists=[lgd])
lgd = fig1.legend(*ax1[0].get_legend_handles_labels(), loc = 'upper center', bbox_to_anchor=(0.5,1.1), ncol=5, frameon=True, fancybox=True, prop={"size": 9})
fig1.tight_layout()
fig1.savefig("ROC_model.%s.pdf" % MODEL_SUFFIX, bbox_inches="tight", bbox_extra_artists=[lgd])
## Measures plot for each stage for each type of measures
measures_labels = ["llf", "aic", "bic", "prsquared",
"precision", "recall", "f_score", "auc"]
stage_colors = sns.color_palette("husl", len(results_full))
plt.clf()
plt.close("all")
fig, ax = plt.subplots(2,4,sharex=True, figsize=(4*3, 2*3))
ax = ax.flatten()
xticklabels = TOP_FEATURES[1:]
xticks_dict = dict((k,i) for i,k in enumerate(xticklabels))
for i,m in enumerate(measures_labels):
for j,r in enumerate(results_full):
features, values = zip(*map(lambda (k,(measures,summary)): (xticks_dict[k],measures[m]), r))
ax[i].plot(features, values, color=stage_colors[j], linestyle="--", marker="x", label="Stage %s" % (j+1), linewidth=1)
ax[i].set_ylabel(m)
ax[i].set_xticks(range(len(xticklabels)))
ax[i].set_xticklabels(xticklabels, rotation=90)
lgd = fig.legend(*ax[0].get_legend_handles_labels(), loc = 'upper center', bbox_to_anchor=(0.5,1.1), ncol=5, frameon=True, fancybox=True, prop={"size": 9})
fig.tight_layout()
plt.savefig("Measures_model.%s.pdf" % MODEL_SUFFIX, bbox_inches="tight", bbox_extra_artists=[lgd])
## Generate intercept model
dump(results_full, "results_all_model/%s/results_all_model.%s.pkl" % (MODEL_VERSION, MODEL_SUFFIX))
x_feature_cols = feature_dict["Intercept"]
results_intercept = model_fit(store_path, X_df_path, y_df_path, feature_key="Intercept", X_cols = x_feature_cols, testing=False, include_prc=False)
dump([[results_intercept]] + results_full, "results_all_model/%s/results_all_model_intercept.%s.pkl" % (MODEL_VERSION, MODEL_SUFFIX))
# DONE
## Create table for each measure
pd.options.display.width=500
measures_labels = ["llf", "aic", "bic", "prsquared", "df_model",
"precision", "recall", "f_score", "auc", "mae", "rmse", "tp", "fp", "tn", "fn"]
with open("Full_measures_coeffs_model.%s.txt" % MODEL_SUFFIX, "wb+") as fp:
for j,(r,tf) in enumerate(zip([[results_intercept]] + results_full, TOP_FEATURES)):
print >> fp, "Stage %s: %s" % (j+1,tf)
header = ["Features"] + measures_labels
rows = map(lambda (k,(measures,summary)): ([k]
+ [measures[m] for m in measures_labels]), r)
df_measures = pd.DataFrame(rows, columns=header)
print >> fp, df_measures
print >> fp, "***"*50
for j,(r,tf) in enumerate(zip([[results_intercept]] + results_full, TOP_FEATURES)):
print >> fp, "##"*10 + ("Stage %s: %s" % (j+1,tf)) + "##"*10
for k,(m,summary) in r:
print >> fp, "Feature: %s" % k
print >> fp, summary
print >> fp, "***"*50
## Plot coefficients of Gender
gender_coeffs = []
gender_ci_025 = []
gender_ci_975 = []
index_names = []
for i, (r,tf) in enumerate(zip(results_full, TOP_FEATURES)):
print "Stage %s: %s" % (i, tf)
res_dict = dict(r)
k = "Gender"
if k in res_dict:
measures, summary = res_dict["Gender"]
else:
measures, summary = res_dict.values()[0]
print summary.tables[1].ix[["C(gender, levels=GENDERS)[T.F]", "C(gender, levels=GENDERS)[T.M]"], "Coef."]
print summary.tables[1].ix[["C(gender, levels=GENDERS)[T.F]", "C(gender, levels=GENDERS)[T.M]"], "[0.025"]
print summary.tables[1].ix[["C(gender, levels=GENDERS)[T.F]", "C(gender, levels=GENDERS)[T.M]"], "0.975]"]
index_names.append("Stage %s: %s" % (i, tf))
gender_coeffs.append(summary.tables[1].ix[["C(gender, levels=GENDERS)[T.F]", "C(gender, levels=GENDERS)[T.M]"], "Coef."])
gender_ci_025.append(summary.tables[1].ix[["C(gender, levels=GENDERS)[T.F]", "C(gender, levels=GENDERS)[T.M]"], "[0.025"])
gender_ci_975.append(summary.tables[1].ix[["C(gender, levels=GENDERS)[T.F]", "C(gender, levels=GENDERS)[T.M]"], "0.975]"])
## Create dataframes
df_gender_coeffs = pd.DataFrame(gender_coeffs, index=index_names)
df_gender_ci_025 = pd.DataFrame(gender_ci_025, index=index_names)
df_gender_ci_975 = pd.DataFrame(gender_ci_975, index=index_names)
## Calculate odds ratio
df_gender_coeffs[["Odds Ratio Female", "Odds Ratio Male"]] = np.exp(
df_gender_coeffs[["C(gender, levels=GENDERS)[T.F]",
"C(gender, levels=GENDERS)[T.M]"]],)
df_gender_ci_025[["Odds Ratio Female", "Odds Ratio Male"]] = np.exp(
df_gender_ci_025[["C(gender, levels=GENDERS)[T.F]",
"C(gender, levels=GENDERS)[T.M]"]],)
df_gender_ci_975[["Odds Ratio Female", "Odds Ratio Male"]] = np.exp(
df_gender_ci_975[["C(gender, levels=GENDERS)[T.F]",
"C(gender, levels=GENDERS)[T.M]"]],)
df_gender_coeffs["Odds Ratio Female/Male"] = df_gender_coeffs["Odds Ratio Female"] / df_gender_coeffs["Odds Ratio Male"]
## Plot the coefficients
xticks = df_gender_coeffs.index.values
x = np.arange(xticks.shape[0])
fig, ax = plt.subplots(3,1, sharex=True)
ax[0].errorbar(x, df_gender_coeffs["C(gender, levels=GENDERS)[T.F]"],
yerr=[df_gender_coeffs["C(gender, levels=GENDERS)[T.F]"] - df_gender_ci_025["C(gender, levels=GENDERS)[T.F]"],
df_gender_ci_975["C(gender, levels=GENDERS)[T.F]"] - df_gender_coeffs["C(gender, levels=GENDERS)[T.F]"]],
fmt="-ro", label="Female", elinewidth=2)
ax[0].errorbar(x, df_gender_coeffs["C(gender, levels=GENDERS)[T.M]"],
yerr=[df_gender_coeffs["C(gender, levels=GENDERS)[T.M]"] - df_gender_ci_025["C(gender, levels=GENDERS)[T.M]"],
df_gender_ci_975["C(gender, levels=GENDERS)[T.M]"] - df_gender_coeffs["C(gender, levels=GENDERS)[T.M]"]],
fmt="-bs", label="Male", elinewidth=2)
ax[0].axhline(y=0.0, color="k", linestyle="--", lw=1)
ax[0].set_ylabel("Coefficient")
ax[0].legend(loc="upper right")
ax[1].errorbar(x, df_gender_coeffs["Odds Ratio Female"],
yerr=[df_gender_coeffs["Odds Ratio Female"] - df_gender_ci_025["Odds Ratio Female"],
df_gender_ci_975["Odds Ratio Female"] - df_gender_coeffs["Odds Ratio Female"]],
fmt="-ro", label="Female", elinewidth=2)
ax[1].errorbar(x, df_gender_coeffs["Odds Ratio Male"],
yerr=[df_gender_coeffs["Odds Ratio Male"] - df_gender_ci_025["Odds Ratio Male"],
df_gender_ci_975["Odds Ratio Male"] - df_gender_coeffs["Odds Ratio Male"]],
fmt="-bs", label="Male", elinewidth=2)
ax[1].axhline(y=1.0, color="k", linestyle="--", lw=1)
ax[1].set_ylabel("Odds Ratio (O.R.)")
ax[1].legend(loc="upper right")
bar_vals = (1./df_gender_coeffs["Odds Ratio Female/Male"]) - 1
ax[2].bar(x - 0.25, bar_vals, width=0.5, color=(bar_vals >= 0.0).map({True: "b", False: "r"}))
ax[2].axhline(y=0.0, color="k", linestyle="--", lw=1)
ax[2].set_ylabel("O.R. M/F - 1")
ax[2].set_xticks(x)
ax[2].set_xticklabels(xticks, rotation=90)
plt.savefig("Gender_coeffs_model.%s.pdf" % MODEL_SUFFIX, bbox_inches="tight")