-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcombine_scans.py
executable file
·93 lines (78 loc) · 4.33 KB
/
combine_scans.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
#!python3
import argparse
import open3d as o3d
import numpy as np
import glob
import os
import re
def check_positive(value):
ivalue = int(value)
if ivalue <= 0:
raise argparse.ArgumentTypeError("%s has to be a positive int value > 0" % value)
return ivalue
def main():
parser = argparse.ArgumentParser(
description='Transform and combine several scans to one cloud using Open3D',
)
parser.add_argument('-i', '--input', dest='dataset', required=True, action='store',
help='Dataset directory, point cloud input directory', type=str)
parser.add_argument('-o', '--output', dest='output', required=True, action='store',
help='cloud output ply file', type=str)
parser.add_argument('-v', '--voxel-size', dest='voxel_size', required=False, default=0.08, action='store',
help='down sample voxel-size', type=float)
parser.add_argument('--f-points', dest='filter_nb_points', required=False, default=10, action='store',
help='filter parameter: The minimum number of neighbour points within the filter radius.',
type=check_positive)
parser.add_argument('--f-radius', dest='filter_radius', required=False, default=0.2, action='store',
help='filter parameter: The radius in which to count for the minimum number of points.',
type=float)
parser.add_argument('-n', '--normals', dest='normals', action='store_true', required=False, default=False,
help='esitamte normals')
parser.add_argument('--n-radius', dest='n_radius', action='store', required=False, default=0.3, type=float,
help='radius to consider for the normal estimation.')
parser.add_argument('--n-max-nn', dest='n_max_nn', action='store', required=False, default=30, type=float,
help='maximum number of nearest neighbors for normal estimation.')
scan_file_pattern = "scan_*.ply"
parser.add_argument('--scan-file-pattern', dest='scan_pattern', action='store', required=False,
default=scan_file_pattern, type=str,
help='scan file pattern with file extension. default: {}'.format(scan_file_pattern))
trans_file_pattern = "scan_*.dat"
parser.add_argument('--trans-file-pattern', dest='trans_pattern', action='store', required=False,
default=trans_file_pattern, type=str,
help='transformation file pattern with file extension, default: {}'.format(trans_file_pattern))
args = parser.parse_args()
owd = os.getcwd()
os.chdir(args.dataset)
sf_pattern = re.compile(args.scan_pattern.replace("*", "(.*)"))
cloud = o3d.geometry.PointCloud()
for scan_file in glob.glob(args.scan_pattern):
match = sf_pattern.search(scan_file)
id = match.group(1)
trans_file = args.trans_pattern.replace("*", id)
if not os.path.isfile(trans_file):
print("Transformation file {} does not exist. Skip scan file {}.".format(trans_file, scan_file))
continue
trans = np.loadtxt(trans_file)
print("read {} and transform with {}".format(scan_file, trans_file))
scan = o3d.io.read_point_cloud(scan_file).transform(trans)
if args.normals or not scan.has_normals():
if not scan.has_normals():
print("No normals in the cloud, estimating normals...")
else:
print("Estimate normals...")
scan.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(
radius=args.n_radius, max_nn=args.n_max_nn))
print("add all points to the combined cloud")
cloud += scan
print("Down sample combined cloud with voxel_size", args.voxel_size)
cloud = cloud.voxel_down_sample(voxel_size=args.voxel_size)
print("max bound", cloud.get_max_bound(), "min_bound", cloud.get_min_bound())
print("Remove radius outlier...")
cloud, ids = cloud.remove_radius_outlier(args.filter_nb_points, args.filter_radius)
print("Removed", len(ids), "points.")
os.chdir(owd)
print("Save combined cloud to ", args.output, "...")
o3d.io.write_point_cloud(args.output, cloud, print_progress=True)
print("Successfully saved cloud to ", args.output)
if __name__ == "__main__":
main()