-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfilter_cloud.py
executable file
·59 lines (46 loc) · 2.6 KB
/
filter_cloud.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
#!python3
import open3d as o3d
import argparse
def check_positive(value):
ivalue = int(value)
if ivalue <= 0:
raise argparse.ArgumentTypeError("%s has to be a positive int value > 0" % value)
return ivalue
def main():
parser = argparse.ArgumentParser(
description='Filtering of point cloud data (PCD) using Open3D',
)
parser.add_argument('-i', '--input', dest='input', required=True, action='store',
help='point cloud input ply file', type=str)
parser.add_argument('-o', '--output', dest='output', required=True, action='store',
help='mesh output ply file', type=str)
parser.add_argument('-f', '--filter', dest='filter', required=False, default=True, action='store_true',
help='remove outliers')
parser.add_argument('--f-points', dest='filter_nb_points', required=False, default=10, action='store',
help='filter parameter: The minimum number of neighbour points within the filter radius.',
type=check_positive)
parser.add_argument('--f-radius', dest='filter_radius', required=False, default=0.2, action='store',
help='filter parameter: The radius in which to count for the minimum number of points.',
type=float)
parser.add_argument('-n', '--normals', dest='normals', action='store_true', required=False, default=False,
help='esitamte normals')
parser.add_argument('--n-radius', dest='n_radius', action='store', required=False, default=0.3, type=float,
help='radius to consider for the normal estimation.')
parser.add_argument('--n-max-nn', dest='n_max_nn', action='store', required=False, default=30, type=float,
help='maximum number of nearest neighbors for normal estimation.')
args = parser.parse_args()
cloud = o3d.io.read_point_cloud(args.input)
print("Remove radius outlier...")
cloud, ids = cloud.remove_radius_outlier(args.filter_nb_points, args.filter_radius)
print("Removed", len(ids), "points.")
if args.normals or not cloud.has_normals():
if not cloud.has_normals():
print("No normals in the point cloud, estimating normals...")
else:
print("Estimate normals...")
cloud.estimate_normals(search_param=o3d.geometry.KDTreeSearchParamHybrid(
radius=args.n_radius, max_nn=args.n_max_nn))
print("Save filtered cloud to", args.output)
o3d.io.write_point_cloud(args.output, cloud, print_progress=True)
if __name__ == "__main__":
main()