-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmetric.py
133 lines (105 loc) · 5.17 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import tensorflow as tf
import numpy as np
from utils import cal_iou_np
FLAGS = tf.app.flags.FLAGS
def update_gt_class(y, idx, test_image_num, class_num):
gt_matrix = np.zeros(shape=[test_image_num, class_num], dtype=np.float32)
for label in y:
gt_matrix[int(idx), int(label)-1] += 1
return gt_matrix
def update_tp_fp(gt_label, gt_quadboxes, rec_boxes, classifier, idx, test_image_num, class_num,
iou_threshold=0.5):
tp_matrix = np.zeros(shape=[test_image_num, class_num], dtype=np.float32)
fp_matrix = np.zeros(shape=[test_image_num, class_num], dtype=np.float32)
idx = int(idx)
gt_quadboxes = gt_quadboxes[:, 0, :]
rec_boxes = rec_boxes.reshape([-1, 8])
classifier = classifier.reshape([-1, 1])
rec_boxes_removed = []
classifier_removed = []
for each_rec_boxes, each_classifier in zip(rec_boxes, classifier):
if np.sum(each_rec_boxes) == 0:
continue
else:
rec_boxes_removed.append(each_rec_boxes)
classifier_removed.append(each_classifier)
rec_boxes = np.reshape(np.array(rec_boxes_removed), [-1, 8])
classifier = np.reshape(np.array(classifier_removed), [-1, 1])
gt_num = gt_label.shape[0]
positive_num = 0
true_positive_num = 0
matching_checking = {}
overlaps = cal_iou_np(gt_quadboxes, rec_boxes)
print("idx : {}".format(idx))
if len(overlaps) != 0:
# (GT dim)
# pred_idx_base_on_gt = np.argmax(overlaps, axis=-1)
# pred_max_iou_base_on_gt = np.amax(overlaps, axis=-1)
gt_idx_base_on_pred = np.argmax(overlaps, axis=0)
gt_max_iou_base_on_pred = np.amax(overlaps, axis=0)
for each_gt_idx, iou, each_pred_label in zip(gt_idx_base_on_pred, gt_max_iou_base_on_pred, classifier):
positive_num += 1
if iou > iou_threshold: # and gt_label[each_gt_idx] == each_pred_label:
if matching_checking.get(each_gt_idx, None) is None:
true_positive_num += 1
matching_checking[each_gt_idx] = 1
false_positive = positive_num - true_positive_num
print("positive_num : {}".format(positive_num))
print("false_positive : {}".format(false_positive))
print("true_positive_num : {}".format(true_positive_num))
print("precision : {}".format(true_positive_num / float(positive_num + 0.00001)))
print("recall : {}".format(true_positive_num / float(gt_num + 0.00001)))
tp_matrix[idx, 0] = true_positive_num
fp_matrix[idx, 0] = false_positive
return tp_matrix, fp_matrix
class F1_Metric(tf.keras.metrics.Metric):
def __init__(self, class_num, test_image_num=10000, mode="recall", name='mAPmetric', **kwargs):
super(F1_Metric, self).__init__(name=name, **kwargs)
self.true_positives = self.add_weight(name="tp", shape=(test_image_num, class_num), initializer='zero')
self.false_positives = self.add_weight(name="fp", shape=(test_image_num, class_num), initializer='zero')
self.gt_counter_per_class = self.add_weight(name='gt_per_class', shape=(test_image_num, class_num),
initializer='zero')
self.test_image_num = test_image_num
self.num_class = class_num
self.mode = mode
self.cnt = self.add_weight(name="cnt", initializer='zero')
def update_state(self, y, pred):
"""
batch size 1 supported
"""
gt_label = y["label"][0]
gt_quadboxes = y["quad_boxes"][0]
rec_boxes = pred["rec_boxes"]
classifier = pred["classifier"]
gt_label_idx = tf.where(gt_label > 0)
gt_label_gather = tf.gather(gt_label, gt_label_idx)
gt_quadboxes_gather = tf.gather(gt_quadboxes, gt_label_idx)
gt_matrix = tf.py_func(update_gt_class, [gt_label_gather, self.cnt, self.test_image_num, self.num_class],
tf.float32, name='update_gt_class')
self.gt_counter_per_class.assign_add(gt_matrix)
tp, fp = tf.py_func(update_tp_fp, [gt_label_gather, gt_quadboxes_gather, rec_boxes, classifier, self.cnt,
self.test_image_num, self.num_class], [tf.float32, tf.float32],
name='update_tp_fp')
self.true_positives.assign_add(tp)
self.false_positives.assign_add(fp)
self.cnt.assign_add(1)
def result(self):
whole_tp = tf.reduce_sum(self.true_positives, axis=[0, 1])
whole_fp = tf.reduce_sum(self.false_positives, axis=[0, 1])
whole_gt = tf.reduce_sum(self.gt_counter_per_class, axis=[0, 1])
if self.mode == "recall":
recall = whole_tp / whole_gt
return recall
elif self.mode == "precision":
precision = whole_tp / (whole_tp + whole_fp)
return precision
else:
recall = whole_tp / whole_gt
precision = whole_tp / (whole_tp + whole_fp)
f_score = 2/(1/recall + 1/precision)
return f_score
def reset_states(self):
for i in range(self.num_class):
self.true_positives[i].assign(0)
self.false_positives[i].assign(0)
self.gt_counter_per_class[i].assign(0)