From dd791dcc2c413ff8a726eab69b4541c49d9be6c3 Mon Sep 17 00:00:00 2001 From: Alex Thomas Date: Wed, 4 Dec 2024 15:40:45 +0000 Subject: [PATCH] Updated various pages to use the langchain-neo4j package --- .../pages/ai-for-customer-experiences.adoc | 2 +- modules/genai-ecosystem/pages/langchain.adoc | 86 +++++++------------ .../pages/llm-graph-builder.adoc | 2 +- 3 files changed, 32 insertions(+), 58 deletions(-) diff --git a/modules/genai-ecosystem/pages/ai-for-customer-experiences.adoc b/modules/genai-ecosystem/pages/ai-for-customer-experiences.adoc index de361402..59b32218 100644 --- a/modules/genai-ecosystem/pages/ai-for-customer-experiences.adoc +++ b/modules/genai-ecosystem/pages/ai-for-customer-experiences.adoc @@ -102,7 +102,7 @@ This methodology is particularly useful in instances where vector search produce +*In[1]:*+ [source, python] ---- -from langchain.vectorstores.neo4j_vector import Neo4jVector +from langchain_neo4j import Neo4jVector from langchain_openai import OpenAIEmbeddings import pandas as pd diff --git a/modules/genai-ecosystem/pages/langchain.adoc b/modules/genai-ecosystem/pages/langchain.adoc index 98b23b7f..a2684e35 100644 --- a/modules/genai-ecosystem/pages/langchain.adoc +++ b/modules/genai-ecosystem/pages/langchain.adoc @@ -15,7 +15,7 @@ It manages templates, composes components into chains and supports monitoring an The broad and deep Neo4j integration allows for vector search, cypher generation and database querying and knowledge graph construction. -Here is an overview of the https://python.langchain.com/docs/use_cases/graph/quickstart[Graph Integrations^]. +Here is an overview of the https://python.langchain.com/docs/tutorials/graph/[Graph Integrations^]. * https://towardsdatascience.com/integrating-neo4j-into-the-langchain-ecosystem-df0e988344d2[Integrating Neo4j into the LangChain Ecosystem^] @@ -27,7 +27,7 @@ image::https://cdn.graphacademy.neo4j.com/assets/img/courses/banners/llm-chatbot [source,shell] ---- -pip install langchain langchain-community +pip install langchain langchain-community langchain-neo4j # pip install langchain-openai tiktoken # pip install neo4j ---- @@ -50,7 +50,7 @@ The Neo4j Vector integration supports a number of operations from langchain.docstore.document import Document from langchain.text_splitter import CharacterTextSplitter from langchain_community.document_loaders import TextLoader -from langchain_community.vectorstores import Neo4jVector +from langchain_neo4j import Neo4jVector from langchain_openai import OpenAIEmbeddings loader = TextLoader("../../modules/state_of_the_union.txt") @@ -64,7 +64,7 @@ embeddings = OpenAIEmbeddings() # The Neo4jVector Module will connect to Neo4j and create a vector index if needed. db = Neo4jVector.from_documents( - docs, OpenAIEmbeddings(), url=url, username=username, password=password + docs, embeddings, url=url, username=username, password=password ) query = "What did the president say about Ketanji Brown Jackson" @@ -85,7 +85,7 @@ Hybrid search combines vector search with fulltext search with re-ranking and de from langchain.docstore.document import Document from langchain.text_splitter import CharacterTextSplitter from langchain_community.document_loaders import TextLoader -from langchain_community.vectorstores import Neo4jVector +from langchain_neo4j import Neo4jVector from langchain_openai import OpenAIEmbeddings loader = TextLoader("../../modules/state_of_the_union.txt") @@ -99,8 +99,8 @@ embeddings = OpenAIEmbeddings() # The Neo4jVector Module will connect to Neo4j and create a vector index if needed. db = Neo4jVector.from_documents( - docs, OpenAIEmbeddings(), url=url, username=username, password=password, - search_type: 'hybrid' + docs, embeddings, url=url, username=username, password=password, + search_type="hybrid" ) query = "What did the president say about Ketanji Brown Jackson" @@ -135,17 +135,17 @@ Many integrations allow you to use the Neo4j Graph as a source of data for LangC [source,python] ---- -from langchain_community.graphs import Neo4jGraph +from langchain_neo4j import Neo4jGraph graph = Neo4jGraph(url=NEO4J_URI, username=NEO4J_USERNAME, password=NEO4J_PASSWORD) QUERY = """ -"MATCH (m:Movie)-[:IN_GENRE]->(:Genre {name:$genre}) +MATCH (m:Movie)-[:IN_GENRE]->(:Genre {name: $genre}) RETURN m.title, m.plot -ORDER BY m.imdbRating DESC LIMIT 5" +ORDER BY m.imdbRating DESC LIMIT 5 """ -graph.query(QUERY, genre="action") +graph.query(QUERY, params={"genre": "action"}) ---- === CypherQAChain @@ -159,28 +159,28 @@ Using an LLM and the graph schema it translates the user question into a Cypher # pip install --upgrade --quiet langchain # pip install --upgrade --quiet langchain-openai -from langchain.chains import GraphCypherQAChain -from langchain_community.graphs import Neo4jGraph +from langchain_neo4j import GraphCypherQAChain, Neo4jGraph from langchain_openai import ChatOpenAI graph = Neo4jGraph(url=NEO4J_URI, username=NEO4J_USERNAME, password=NEO4J_PASSWORD) # Insert some movie data graph.query( - """ -MERGE (m:Movie {title:"Top Gun"}) +""" +MERGE (m:Movie {title:'Top Gun'}) WITH m -UNWIND ["Tom Cruise", "Val Kilmer", "Anthony Edwards", "Meg Ryan"] AS actor +UNWIND ['Tom Cruise', 'Val Kilmer', 'Anthony Edwards', 'Meg Ryan'] AS actor MERGE (a:Actor {name:actor}) MERGE (a)-[:ACTED_IN]->(m) """ ) chain = GraphCypherQAChain.from_llm( - ChatOpenAI(temperature=0), graph=graph, verbose=True + ChatOpenAI(temperature=0), graph=graph, verbose=True, + allow_dangerous_requests=True ) -chain.run("Who played in Top Gun?") +chain.run("Who acted in Top Gun?") ---- === Advanced RAG Strategies @@ -195,8 +195,6 @@ These are also available as LangChain Templates. * https://blog.langchain.dev/implementing-advanced-retrieval-rag-strategies-with-neo4j/[Implementing Advanced Retrieval RAG Strategies with Neo4j^] -* https://python.langchain.com/docs/templates/neo4j-advanced-rag - [source,shell] ---- pip install -U "langchain-cli[serve]" @@ -227,33 +225,6 @@ langchain serve image::https://lh7-us.googleusercontent.com/jfDNiPa5ccefX6h0HiVzJbqnlgAZgfPda90truHSfbwSs3JkfxZ-xbA9mZE8y2fNf_3n5cgVhbdhN0ryuMoK2JNbMgTe1OLJMA6CQRhWBxzdKRLVurUFDndT7ki4vMh-cdv3SAn040HTpab9XkzGj5Q[] -=== LangChain Templates - -https://blog.langchain.dev/langchain-templates/[Langchain Templates^] are a set of preconfigured chains and components that can be used to build GenAI workflows and applications. -You can test them interactively on the LangChain Playground and run them with https://github.com/langchain-ai/langserve[LangServe^] to run as REST APIs, they also integrate with [LangSmith] for monitoring and observability. - -By creating an application from templates, their source code is added to your application and you can modify them to fit your needs. - -==== List of Templates - -This https://python.langchain.com/docs/templates/neo4j-cypher[Cypher template] allows you to interact with a Neo4j graph database in natural language, using an OpenAI LLM. - -It transforms a natural language question into a Cypher query (used to fetch data from Neo4j databases), executes the query, and provides a natural language response based on the query results. - -The https://python.langchain.com/docs/templates/neo4j-cypher-ft[Cypher-FT Template^] additionally utilizes a full-text index for efficient mapping of text values to database entries, thereby enhancing the generation of accurate Cypher statements. - -The https://python.langchain.com/docs/templates/neo4j-cypher-memory[Cypher Memory Template^] also features a conversational memory module that stores the dialogue history in the Neo4j graph database. The conversation memory is uniquely maintained for each user session, ensuring personalized interactions. - -The https://python.langchain.com/docs/templates/neo4j-generation[Neo4j generation Template^] pairs LLM-based knowledge graph extraction using OpenAI functions, with Neo4j AuraDB, a fully managed cloud graph database. - -This https://python.langchain.com/docs/templates/neo4j-vector-memory[Neo4j Vector Memory Template^] allows you to integrate an LLM with a vector-based retrieval system using Neo4j as the vector store. Additionally, it uses the graph capabilities of the Neo4j database to store and retrieve the dialogue history of a specific user's session. Having the dialogue history stored as a graph allows for seamless conversational flows but also gives you the ability to analyze user behavior and text chunk retrieval through graph analytics. - -The https://python.langchain.com/docs/templates/neo4j-parent[Parent-Child Retriever Template^] allows you to balance precise embeddings and context retention by splitting documents into smaller chunks and retrieving their original or larger text information. - -Using a Neo4j vector index, the package queries child nodes using vector similarity search and retrieves the corresponding parent's text. - -The https://python.langchain.com/docs/templates/neo4j-semantic-layer[Neo4j Semantic Layer Template^] is designed to implement an agent capable of interacting with a graph database like Neo4j through a semantic layer using OpenAI function calling. The semantic layer equips the agent with a suite of robust tools, allowing it to interact with the graph databas based on the user's intent. - === Semantic Layer A semantic layer on top of a (graph) database doesn't rely on automatic query generation but offers a number of APIs and tools to give the LLM access to the database and it's structures. @@ -281,14 +252,14 @@ You can index embeddings for and link questions and answers back to the retrieve Creating a Knowledge Graph from unstructured data like PDF documents used to be a complex and time-consuming task that required training and using dedicated, large NLP models. -The https://python.langchain.com/docs/use_cases/graph/constructing[Graph Transformers^] are tools that allows you to extract structured data from unstructured documents and transform it into a Knowledge Graph. +The https://python.langchain.com/v0.1/docs/use_cases/graph/constructing[Graph Transformers^] are tools that allows you to extract structured data from unstructured documents and transform it into a Knowledge Graph. NOTE: You can see a practical application, code and demo for extracting knowledge graphs from PDFs, YouTube transcripts, wikpedia articles and more with the xref:llm-graph-builder.adoc[LLM Graph Builder]. image:: -* https://python.langchain.com/docs/use_cases/graph/integrations/diffbot_graphtransformer[Diffbot Graph Transformer^] -* https://python.langchain.com/docs/use_cases/graph/constructing#llm-graph-transformer[LLM Graph Transformer^] +* https://python.langchain.com/docs/integrations/graphs/diffbot/[Diffbot Graph Transformer^] +* https://python.langchain.com/v0.1/docs/use_cases/graph/constructing/#llm-graph-transformer[LLM Graph Transformer^] * https://neo4j.com/developer-blog/knowledge-graph-based-chatbot-with-gpt-3-and-neo4j/[Knowledge Graph-based Chatbot with GPT-3 and Neo4j^] * https://blog.langchain.dev/constructing-knowledge-graphs-from-text-using-openai-functions/[Constructing Knowledge Graphs from Text using OpenAI Functions^] @@ -298,13 +269,13 @@ image:: == Documentation * https://python.langchain.com/docs/integrations/providers/neo4j/[Neo4j Integrations^] -* https://python.langchain.com/docs/use_cases/graph/graph_cypher_qa[Graph Cypher QA Chain^] +* https://python.langchain.com/docs/tutorials/graph/#chain[Graph Cypher QA Chain^] * https://python.langchain.com/docs/integrations/vectorstores/neo4jvector[Neo4j Vector^] -* https://python.langchain.com/docs/use_cases/graph/constructing[Graph Transformers^] +* https://python.langchain.com/v0.1/docs/use_cases/graph/constructing[Graph Transformers^] == Starter Kit -This https://github.com/neo4j-examples/langchain-starter-kit/blob/main/app/vector_chain.py[starter-kit] demonstrates how to run a FastAPI server using LangChain to answer queries on data stored in a Neo4j instance. The single endpoint can be used to retrieve answers using either a https://python.langchain.com/v0.1/docs/integrations/vectorstores/neo4jvector/[Vector index chain], https://python.langchain.com/v0.1/docs/integrations/graphs/neo4j_cypher/[GraphCypherQA Chain], or a composite answer of both. The https://github.com/neo4j-examples/langchain-starter-kit/tree/langserve[langserve] branch contains an example of the same service, using https://python.langchain.com/v0.1/docs/langserve/[LangServe] +This https://github.com/neo4j-examples/langchain-starter-kit/blob/main/app/vector_chain.py[starter-kit] demonstrates how to run a FastAPI server using LangChain to answer queries on data stored in a Neo4j instance. The single endpoint can be used to retrieve answers using either a https://python.langchain.com/docs/integrations/vectorstores/neo4jvector/[Vector index chain], https://python.langchain.com/docs/integrations/graphs/neo4j_cypher/[GraphCypherQA Chain], or a composite answer of both. The https://github.com/neo4j-examples/langchain-starter-kit/tree/langserve[langserve] branch contains an example of the same service, using https://python.langchain.com/v0.1/docs/langserve/[LangServe] See this https://neo4j.com/developer-blog/langchain-neo4j-starter-kit/[Developer Blog Article] for additional details and instructions on working with the Starter Kit. @@ -313,10 +284,13 @@ See this https://neo4j.com/developer-blog/langchain-neo4j-starter-kit/[Developer |=== | icon:user[] Authors | https://github.com/tomasonjo[Tomaz Bratanic^] | icon:comments[] Community Support | https://community.neo4j.com/[Neo4j Online Community^] -| icon:github[] Data Repository | https://github.com/langchain-ai/langchain[GitHub] -| icon:github[] Issues | https://github.com/langchain-ai/langchain/issues +| icon:github[] LangChain Repository | https://github.com/langchain-ai/langchain[GitHub] +| icon:github[] LangChain Issues | https://github.com/langchain-ai/langchain/issues[Issues] +| icon:github[] LangChain Neo4j Repository | https://github.com/langchain-ai/langchain-neo4j[GitHub] +| icon:book[] LangChain Neo4j API Docs | https://python.langchain.com/api_reference/neo4j/index.html[API Docs] +| icon:book[] LangChain Neo4j Issues | https://github.com/langchain-ai/langchain-neo4j/issues[Issues] | icon:book[] Documentation | https://python.langchain.com/docs/integrations/providers/neo4j/[Neo4j Integrations^] -| icon:book[] Documentation | https://python.langchain.com/docs/use_cases/graph/quickstart[Graph Overview Docs^] +| icon:book[] Documentation | https://python.langchain.com/docs/tutorials/graph[Graph Overview Docs^] | icon:github[] Starter Kit |https://github.com/neo4j-examples/langchain-starter-kit[LangChain Starter Kit^] | icon:code[] Juypter | https://github.com/tomasonjo/blogs/tree/master/llm[Jupyter Notebooks^] |=== diff --git a/modules/genai-ecosystem/pages/llm-graph-builder.adoc b/modules/genai-ecosystem/pages/llm-graph-builder.adoc index 0a4cca36..7147b38e 100644 --- a/modules/genai-ecosystem/pages/llm-graph-builder.adoc +++ b/modules/genai-ecosystem/pages/llm-graph-builder.adoc @@ -29,7 +29,7 @@ Afterwards you can use different RAG approaches (GraphRAG, Vector, Text2Cypher) ==== The front-end is a React Application and the back-end a Python FastAPI application running on Google Cloud Run, but you can deploy it locally using docker compose. -It uses the https://python.langchain.com/docs/use_cases/graph/constructing[llm-graph-transformer module^] that Neo4j contributed to LangChain and other langchain integrations (e.g. for GraphRAG search). +It uses the https://python.langchain.com/v0.1/docs/use_cases/graph/constructing[llm-graph-transformer module^] that Neo4j contributed to LangChain and other langchain integrations (e.g. for GraphRAG search). All Features are documented in detail here: xref::llm-graph-builder-features.adoc[]