-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstars_analytics.py
executable file
·527 lines (454 loc) · 22.3 KB
/
stars_analytics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import json
import csv
import os
from argparse import ArgumentParser
from tabulate import tabulate
import folium
import pandas as pd
import datetime
import requests
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
def query_github(github_user, github_pw, git_repo_url_base, https_proxy=None, fname="star_gazers.csv"):
headers = {'Accept': 'application/vnd.github.v3.star+json'}
proxyDict = {"https": https_proxy}
recs_per_page = 50
page = 1
cnt_stars = 0
git_repo_url_base = git_repo_url_base.replace("github.com", "api.github.com/repos")
with open(fname, "w") as file:
csv_file = csv.writer(file)
while True:
git_repo_url = git_repo_url_base + "/stargazers?page={}&per_page={}"
r = requests.get(git_repo_url.format(page, recs_per_page),
auth=(github_user, github_pw),
headers=headers, proxies=proxyDict)
if not r.ok:
print("Done or Error")
break
stars_records = json.loads(r.text or r.content)
nstars = len(stars_records)
if nstars <= 0:
print("Done")
break
for star in range(nstars):
print("-" * 50 + str(cnt_stars+star) + " (page:" + str(page) + ") " + "-" * 50)
print(stars_records[star])
user = stars_records[star]['user']
login = user['login']
starred_at = stars_records[star]['starred_at']
starred = datetime.datetime.strptime(starred_at, '%Y-%m-%dT%H:%M:%SZ')
print(login, starred.year, starred.day, starred.month)
r = requests.get("https://api.github.com/users/" + login,
auth=(github_user, github_pw),
headers=headers, proxies=proxyDict)
if not r.ok:
raise ValueError("GET https://api.github.com/users/ failed")
user_desc = json.loads(r.text or r.content)
for k,v in user_desc.items():
if isinstance(v, str):
user_desc[k] = v.encode('utf-8')
print(user_desc['login'], user_desc['id'], user_desc['company'],
user_desc['name'], user_desc['location'], user_desc['bio'], starred_at)
csv_file.writerow([user_desc['login'], user_desc['id'], user_desc['company'],
user_desc['name'], user_desc['location'], user_desc['bio'], starred_at])
file.flush()
os.fsync(file.fileno())
page += 1
cnt_stars += nstars
print("Total: ", cnt_stars)
def get_countries_metadata(fname="countries-readable.json"):
"""Read a database file containing information about different countries.
Specifically, we are interested in the capital and population of each country, because
we will use this information to disambiguate records, by giving more weight to certain
features.
Source: https://github.com/lorey/list-of-countries/blob/master/json/countries-readable.json
"""
details = {}
with open(fname) as f:
countries = json.load(f)
for country in countries:
details[country['name'].lower()] = (country['capital'].lower(), int(country['population']))
# We replace "South Korea" by "Korea" since "Korea" is a shorthand form many people use. I'm going to make a
# political statement and say that unfortunately North Korea is not relevant to github for the time being.
details['korea'] = details['south korea']
del details['south korea']
return details
def read_cities_db(fname="world-cities_json.json"):
"""Read a database file containing names of cities from different countries.
Source: https://pkgstore.datahub.io/core/world-cities/world-cities_json/data/5b3dd46ad10990bca47b04b4739a02ba/world-cities_json.json
"""
with open(fname) as f:
world_cities = json.load(f)
country_city_pairs = set()
processed_sub_countries = []
for city_record in world_cities:
country = city_record['country'].lower()
if country == "south korea":
# See my comment above regarding the special handling of South Korea
country = "korea"
city = city_record['name'].lower()
country_city_pairs.add((country, city))
subcountry = city_record['subcountry'].lower() if city_record['subcountry'] is not None else None
if subcountry is not None and subcountry not in processed_sub_countries:
# Add (subcountry, country)
processed_sub_countries.append(subcountry)
country_city_pairs.add((country, subcountry))
# People use these abbreviations, so we can't ignore them
country_city_pairs.add(('united states', 'usa'))
country_city_pairs.add(('united states', 'u.s.a.'))
country_city_pairs.add(('united kingdom', 'uk'))
country_city_pairs.add(('united kingdom', 'u.k.'))
country_city_pairs.add(('china', 'prc'))
country_city_pairs.add(('china', 'p.r.c.'))
# Sort by longest city name first, because later we want to do long-string-match
country_city_pairs = sorted(country_city_pairs, key=lambda pair: len(pair[1]), reverse=True)
return country_city_pairs
def get_location_feature(record):
"""Clean the star record, and return the location feature.
"""
location_features = record[4]
location_features = location_features.lower()
location_features = location_features.replace('\n', ' ')
location_features = location_features.replace(',', ' ')
location_features = location_features.replace(',', ' ')
return location_features
def match_country(raw_location_feature, country_city_pairs, country_details):
"""Find the country which is most-likely home of this github star-gazer.
We perform a simple search for the names of countries and cities.
Return:
matched country, matched city, string describing how we matched (for debug)
"""
matches = []
for (country, city) in country_city_pairs:
if city in raw_location_feature:
# So we only append to the matches list if the length of the matched city is
# as long as the existing matches. We rely on the fact that when we created
# country_city_pairs, we sorted it by the longest-city-name-first.
# This is a form of disambiguation: we only want to consider the longest matches.
# Some city names are really short (e.g. 2 letters) and will be falsly detected,
# so we only consider them a match if we didn't match a longer substring.
if len(matches) == 0 or len(city) == len(matches[0][1]):
matches.append((country, city))
for country in country_details.keys():
if country in raw_location_feature:
# This is a simple way to give this signal extra weight:
# Matching a country name is a very strong indication.
matches.append((country, country))
matches.append((country, country))
if len(matches) == 0:
return None, None, "No match found"
if len(matches) == 1:
return matches[0][0], matches[0][1], "Single match found ({})".format(matches[0][1])
# Multiple matches - requires disambiguation
# 1. Use voting to disambiguate: we create a dictionary for counting how many matches
# we found for each country.
candidate_countries = {}
for (country, city) in matches:
try:
candidate_countries[country] += 1
except KeyError:
candidate_countries[country] = 1
if len(candidate_countries) == 1:
# Only one country is in the matches list
return matches[0][0], matches[0][1], "Multiple match for a single country"
#print("Ambiguity for {}: {}".format(record, matches))
# Sort the dictionary by the number of matches per country
candidate_list = sorted(candidate_countries.items(), key=lambda kv: kv[1], reverse=True)
if candidate_list[0][1] > candidate_list[1][1]:
# One country dominates
return candidate_list[0][0], candidate_list[0][0], "Most matches"
# Ladies and gentlemen: we have a tie!
# Two or more countries have the same number of matches.
# 1. Disambiguate by giving more weight to country capitals: if we find that in
# the matches list we have both a country and its capital, we consider that a
# very strong signal of a correct match.
largest_population = {'country_city': (None, None), 'population': 0}
for (country, city) in matches:
if city == country_details[country][0]:
# Found a match with a capital of a country
return country, city, "Resolved ambiguity by matching the capital"
# We also look for the country with the largest population (see below).
population = country_details[country][1]
if population > largest_population['population']:
largest_population['country_city'] = (country, city)
largest_population['population'] = population
# 2. Disambiguate by giving more weight to the country with the larger population.
# The idea is that all-else-being-equal, it is more likely that a star came from a
# country with a larger population.
return (largest_population['country_city'][0],
largest_population['country_city'][1],
"Resolved ambiguity by population " + str(matches))
# Use this flag to debug the parsing of star-gazer country-of-origin decision.
# Set this DEBUG_COUNTRY to the name of a particual country (all small caps) and
# you will see how and why it made its classification decision.
DEBUG_COUNTRY = None
#DEBUG_COUNTRY = "brazil"
def read_starring_history_db(country_city_pairs, country_details, fcache):
countries_stats = {}
with open(fcache) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
record_count = 0
for record in csv_reader:
raw_location_feature = get_location_feature(record)
matched_country, matched_str, reason = match_country(raw_location_feature,
country_city_pairs,
country_details)
if matched_country is not None:
if matched_country == DEBUG_COUNTRY:
print("Detected {} in: {} matched: {} reason: {}".format(matched_country, raw_location_feature,
matched_str, reason))
try:
countries_stats[matched_country]["count"] += 1
countries_stats[matched_country]["records"].append(record_count)
countries_stats[matched_country]["debug"].append(raw_location_feature)
except KeyError:
countries_stats[matched_country] = {"count": 1,
"records": [record_count],
"debug": [raw_location_feature]}
record_count += 1
return countries_stats, record_count
def cached_query_results_summary(fcache):
country_details = get_countries_metadata()
country_city_pairs = read_cities_db()
countries_stats, record_count = read_starring_history_db(country_city_pairs, country_details, fcache)
print("\nSummary:")
print("Total: ", record_count)
total_matches = 0
for country_name, country_match_info in countries_stats.items():
cnt = country_match_info["count"]
total_matches += cnt
print("total_matches = ", total_matches)
verbose = False
if verbose:
print(json.dumps(countries_stats, indent=4))
countries_list = sorted(countries_stats.items(), key=lambda kv: kv[1]["count"], reverse=True)
return countries_list, record_count, total_matches
def cached_query_results_df(fcache):
countries_list, record_count, total_matches = cached_query_results_summary(fcache)
df = pd.DataFrame(columns=['Country', 'Instances', '%', '% extrapolated'])
for country_stats in countries_list:
country = country_stats[0]
cnt_instances = country_stats[1]["count"]
df.loc[len(df.index)] = ([country,
cnt_instances,
100 * cnt_instances/record_count,
100 * cnt_instances/total_matches])
return df
def print_stars_per_country(fcache):
df = cached_query_results_df(fcache)
t = tabulate(df, headers='keys', tablefmt='psql', floatfmt=".5f")
print(t)
def plot_stars_per_country(fcache):
df = cached_query_results_df(fcache)
plt.figure(figsize=(20, 10))
plt.bar(df['Country'], df['% extrapolated'], width = 1/1.5)
plt.title('Stars Per Country (%)')
plt.xticks(rotation=90)
plt.ylabel('% Stars');
plt.show()
def create_stars_map(fcache, html_name='stars_map.html'):
# Source https://github.com/albertyw/avenews/blob/master/old/data/average-latitude-longitude-countries.csv
geo = {}
fname = "average-latitude-longitude-countries.csv"
with open(fname) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
next(csv_reader, None) # skip the headers
for record in csv_reader:
country = record[1].lower()
if country == "korea, democratic people's republic of":
country = "korea"
if country == "russian federation":
country = "russia"
if country == "moldova, republic of":
country = "moldova"
if country == "iran, islamic republic of":
country = "iran"
if country == "canada":
# I don't like the coordinates chosen for Canada
geo[country] = (float(record[2])-4, float(record[3])-2)
continue
geo[country] = (float(record[2]), float(record[3]))
# Add missing record for Ivory Coast
geo["ivory coast"] = (8, 6)
countries_list, record_count, total_matches = cached_query_results_summary(fcache)
# Make an empty map
m = folium.Map(location=[20, 0], tiles='Cartodb Positron', zoom_start=3)
MAX_RADIUS = 3000000
# Add marker one by one on the map
for country_stats in countries_list:
try:
country = country_stats[0]
cnt_instances = country_stats[1]["count"]
folium.Circle(
location=[geo[country][0], geo[country][1]],
popup="{}: {:.2f}%".format(country, cnt_instances*100/total_matches),
radius=MAX_RADIUS * cnt_instances/total_matches,
color='crimson',
fill=True,
fill_color='crimson'
).add_to(m)
except KeyError as e:
# Misclassification of strings as valid country names can occur,
# although they should be very few, if any.
print(e)
# Save it as html
m.save(html_name)
print("Created HTML file {}".format(html_name))
def add_star_for_date(record, starring_log):
"""Add a star to the stars-count of the date of the specified log record.
Convert from string, to datetime.datetime to datetime.date.
"""
starred_at_str = record[6]
starred_at_datetime = datetime.datetime.strptime(starred_at_str, '%Y-%m-%dT%H:%M:%SZ')
starred_at_date = datetime.date(starred_at_datetime.year,
starred_at_datetime.month,
starred_at_datetime.day)
starring_log[starred_at_date] = starring_log.setdefault(starred_at_date, 0) + 1
def group_by_date_df(fcache, group_type):
"""Monthly trending stars data"""
assert group_type in ["monthly", "daily"]
starring_log = {}
with open(fcache) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for record in csv_reader:
add_star_for_date(record, starring_log)
group = {}
for date, cnt in starring_log.items():
if group_type == "monthly":
key = str(date.month) + "/" + str(date.year)
elif group_type == "daily":
key = date
group[key] = group.setdefault(key, 0) + cnt
total = 0
if group_type == "monthly":
df = pd.DataFrame(columns=['Month', 'New Stars', 'Cumulative Stars'])
else:
df = pd.DataFrame(columns=['Date', 'New Stars', 'Cumulative Stars'])
for month, cnt in group.items():
total += cnt
df.loc[len(df.index)] = ([month, cnt, total])
return df
def print_history(fcache, group_type):
"""Monthly trending stars data"""
df = group_by_date_df(fcache, group_type)
t = tabulate(df, headers='keys', tablefmt='psql', floatfmt=".5f")
print(t)
def plot_history(fcache, group_type):
"""Monthly trending stars data"""
df = group_by_date_df(fcache, group_type)
if group_type == "monthly":
plt.plot(df['Month'], df['New Stars'], marker='o', markerfacecolor='blue', markersize=8, color='skyblue', linewidth=3)
else:
plt.plot(df['Date'], df['New Stars'], marker='o', markerfacecolor='blue', markersize=8, color='skyblue',
linewidth=3)
#plt.title('New stars activity for ' + start_of_month.strftime("%B/%Y"))
plt.xticks(rotation=90)
plt.ylabel('Stars');
plt.show()
def daily_history_df(fcache, desired_month, desired_year):
"""Daily trending stars data"""
starring_log = {}
with open(fcache) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for record in csv_reader:
add_star_for_date(record, starring_log)
daily = {}
total = 0
start_of_month = datetime.date(desired_year, desired_month, 1)
for date, cnt in starring_log.items():
if date < start_of_month:
total += cnt
if date.month == desired_month:
key = str(date.day) + "/" + str(date.month)
daily[key] = daily.setdefault(key, 0) + cnt
df = pd.DataFrame(columns=['Date', 'New Stars', 'Cumulative Stars'])
for month, cnt in daily.items():
total += cnt
df.loc[len(df.index)] = ([month, cnt, total])
return df
def print_daily_history(fcache, desired_month=9, desired_year=2018):
df = daily_history_df(fcache, desired_month, desired_year)
t = tabulate(df, headers='keys', tablefmt='psql', floatfmt=".5f")
print(t)
def plot_daily_history(fcache, desired_month=6, desired_year=2018):
df = daily_history_df(fcache, desired_month, desired_year)
plt.plot(df['Date'], df['New Stars'], marker='o', markerfacecolor='blue', markersize=8, color='skyblue', linewidth=3)
start_of_month = datetime.date(desired_year, desired_month, 1)
plt.title('New stars activity for ' + start_of_month.strftime("%B/%Y"))
plt.xticks(rotation=90)
plt.ylabel('Stars');
plt.show()
def add_star_for_day_of_week(record, starring_log):
starred_at = record[6]
starred = datetime.datetime.strptime(starred_at, '%Y-%m-%dT%H:%M:%SZ')
day_of_week = starred.weekday()
starring_log[day_of_week] = starring_log.setdefault(day_of_week, 0) + 1
# def print_day_of_week_history(fcache):
# """Print the number of stars per each day of the week"""
# daily_log = {}
# day_of_week_log = {}
# with open(fcache) as csv_file:
# csv_reader = csv.reader(csv_file, delimiter=',')
# for record in csv_reader:
# add_star_for_day_of_week(record, day_of_week_log)
# add_star_for_date(record, daily_log)
#
# # Remove outliers.
# # Certain events, like an announcement over social media, can cause a daily peak that is an outlier and
# # not indicative of the steady-state star-gazers behavior. We can remove these events, to get a "cleaner"
# # view of the gazers behavior. You might have to look at the data and experiment.
# # In this case, I only remove the highest single-day starring event.
# daily_log = sorted(daily_log.items(), key=lambda kv: kv[1], reverse=True)
# outlier_date = daily_log[0][0]
# outlier_val = daily_log[0][1]
# outlier_date = datetime.datetime(outlier_date)
# day_of_week_log[outlier_date.weekday()] -= outlier_val
# print(day_of_week_log)
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument('command',
choices=["query-github",
"stars-geo-map",
"stars-geo-tbl",
"monthly",
"daily",
#"day-of-week",
"detailed-month"],
help='path to dataset')
parser.add_argument("-u", "--user", dest="git_user", help="git user name")
parser.add_argument("-p", "--password", dest="git_pw", help="git user password")
parser.add_argument("-x", "--proxy", dest="proxy", help="HTTPS proxy", default=None)
parser.add_argument("-r", "--repo",
dest="git_repo",
help="git repo URL (e.g. https://github.com/NervanaSystems/distiller)")
parser.add_argument("-c", "--cache-file", dest="cache_file", default="star_gazers.csv",
help="path to the file caching the results of querying github")
parser.add_argument("-f", "--format",
choices=["plot","console"],
default="console",
dest="output_format",
help="output format: plot|console")
args = parser.parse_args()
if args.command == "query-github":
query_github(args.git_user, args.git_pw, args.git_repo, args.proxy)
if args.command == "stars-geo-tbl":
if args.output_format == "plot":
plot_stars_per_country(args.cache_file)
else:
print_stars_per_country(args.cache_file)
if args.command == "stars-geo-map":
create_stars_map(args.cache_file)
if args.command == "monthly" or args.command == "daily":
if args.output_format == "plot":
plot_history(args.cache_file, group_type=args.command)
else:
print_history(args.cache_file, group_type=args.command)
if args.command == "detailed-month":
if args.output_format == "plot":
plot_daily_history(args.cache_file)
else:
print_daily_history(args.cache_file)
# if args.command == "day-of-week":
# print_day_of_week_history(args.cache_file)