-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathLOL-paper.html
359 lines (222 loc) · 9.1 KB
/
LOL-paper.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
<!DOCTYPE html>
<html>
<head>
<title>LOL</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8"/>
<script src="remark-latest.min.js" type="text/javascript"></script>
<link rel="stylesheet" href="http://jovo.me/fonts/gentona/gentona.css">
<link rel="stylesheet" href="http://jovo.me/fonts/quadon/quadon.css">
<link rel="stylesheet" type="text/css" href="remarkstyle.css">
<!-- <script type="text/javascript" src="https://github.com/downloads/gnab/remark/remark-0.4.2.min.js"></script> -->
<script type="text/javascript" src="https://ajax.googleapis.com/ajax/libs/jquery/1.8.2/jquery.min.js"></script>
<script src="http://cdn.mathjax.org/mathjax/latest/MathJax.js?config=TeX-AMS_HTML&delayStartupUntil=configured" type="text/javascript"></script>
<script type="text/javascript">
var slideshow = remark.create();
// Setup MathJax
MathJax.Hub.Config({
tex2jax: {
skipTags: ['script', 'noscript', 'style', 'textarea', 'pre']
}
});
MathJax.Hub.Queue(function() {
$(MathJax.Hub.getAllJax()).map(function(index, elem) {
return(elem.SourceElement());
}).parent().addClass('has-jax');
});
MathJax.Hub.Configured();
</script>
</head>
<body onload="var slideshow = remark.create();">
<textarea id="source">
class: center, middle
name:opening
### Supervised Manifold Learning Outperforms PCA for Subsequent Inference
Joshua T. Vogelstein*, Minh Tang, Da Zheng, Randal Burns, Mauro Maggioni
<br>
.center[
<br>
<!-- JHU Kavli Neuroscience Discovery Institute -->
{[bme](http://www.bme.jhu.edu/), [icm](http://icm.jhu.edu/), [cis](http://cis.jhu.edu/), [idies](http://idies.jhu.edu/), [kavli](http://kavlijhu.org/), [cs](http://engineering.jhu.edu/computer-science/), [ams](http://engineering.jhu.edu/ams/), [neuro](http://neuroscience.jhu.edu/)} | [jhu](https://www.jhu.edu/)
<br>
questions: [jovo@jhu.edu](mailto:jovo at jhu dot edu)
<br>
slides: <http://neurodata.io/tools/LOL/>
<br>
Co-Founder: [NeuroData](http://neurodata.io) & [gigantum](http://gigantum.io)
]
---
class: center, middle
# Interrupt!
---
### What is supervised learning?
Given (X<sub>i</sub>,Y<sub>i</sub>) pairs with neither F<sub>Y</sub> nor F<sub>Y</sub> degenerate,
*supervised learning* is the estimation of any given functional of F<sub>X|Y</sub>
--
#### Examples
- Classification
- Regression
- 2-sample testing
- K-sample testing
---
### Classification and Fisher's LDA
- Given F<sub>X|Y</sub> = N(μ<sub>y</sub>,Σ) and F<sub>Y</sub> = B(π),
- where X ϵ R<sup>p</sup>
- Bayes optimal classifier is x' Σ<sup>-1</sup> δ > t, where δ=μ<sub>0</sub>-μ<sub>1</sub>
--
#### Properties
- simple
- multiclass generalizations
- plug-in estimate converges to Bayes optimal
- algorithmic efficiency
---
### But...
- When n < p, our estimate of Σ is singular
- Cannot use Fisher's LDA
- What to do?
<br>
--
- Manifold learning
- Spare modeling (is secretly also manifold learning)
<br>
---
### Manifold Learning for Subsequent Inference
<img src="../Figs/mnist2.png" STYLE="margin:auto; width:100%"/>
---
### Limitations of existing approaches
- Manifold learing
- is typically unsupervised
- out of sample embedding is icky
- do not scale to terabytes (often require n<sup>3</sup> operations)
- who says directions of variance are near directions of discrimination?
<br>
--
- Sparse modeling (is supervised, but...)
- NP-hard (feature screening), or
- approximations do not scale to terabytes (Lasso), or
- non-convex (Dictionary learning),
- with icky hyperparameters (elastic net & dictionary learning)
---
## Linear Projections
- PCA: eig({x<sub>i</sub> - μ})
- PCA': eig({x<sub>i</sub> - μ<sub>j</sub>})
- LOL: [δ, eig({x<sub>i</sub> - μ<sub>j</sub>})]
"Linear Optimal Low-Rank"
<br>
--
### Notes
- Fisher's LDA uses δ and {x<sub>i</sub> - μ<sub>j</sub>}
- PCA' removes δ
- PCA kind of accidentally includes δ, Σ + π(1-π) δ δ', but weights it suboptimally
- LOL uses both terms explicitly, weighting δ more
- For each we compose with LDA on low-d estimates
---
## LOL Gaussian Intuition
<img src="../Figs/cigars_est.png" STYLE="margin:auto; width:90%"/>
---
## LOL > PCA Theory
<img src="LOL_theory.png" STYLE="margin:auto; width:100%"/>
---
## Unpacking the theory: Chernoff Information
- C(F,G) = sup<sub> t </sub> [ -log ∫ f<sup>t</sup>(x) g<sup>1-t</sup>(x) dx], for 0 < t < 1
- the *exponential rate* at which the Bayes error decreases
- it is the tightest possible bound on performance
- if F=N(μ<sub>0</sub>,Σ<sub>0</sub>) and G=N(μ<sub>1</sub>,Σ<sub>1</sub>)
- C(F,G)= 0.5 sup<sub>t</sub> t(1-t) δ' Σ<sup>-1</sup> δ + log |Σ<sub>t</sub>| / (|Σ<sub>0</sub>|<sup>t</sup> |Σ<sub>1</sub>|<sup>1-t</sup>)
--
### Chernoff on Projected Data
<!-- - let F =N(μ<sub>0</sub>,Σ) and G=N(μ<sub>1</sub>,Σ) -->
- let F & G be Gaussian with same covariance (LDA model)
- let A be any linear transformation
- C(F<sup>A</sup>, G<sup>A</sup>) = 1/8 * || P<sub>Z</sub> Σ<sup>-1/2</sup> δ ||<sub>F</sub><sup>2</sup>
- P<sub>Z</sub> = Z (Z' Z)<sup>-1</sup> Z', and Z = Σ<sup>1/2</sup>A'
- let C<sup>A</sup> := C(F<sup>A</sup>, G<sup>A</sup>)
---
## "Thm A: LOL > PCA'"
<!-- - let A = LOL projection -->
<!-- - let B = PCA' projection -->
- let F & G be Gaussian with same covariance
- C<sup>LOL</sup> ≥ C<sup>PCA'</sup>
- inequality is strict whenever δ' (I - U<sub>d</sub>U<sub>d</sub>' ) δ ≥ 0.
---
## "Thm B: LOL > PCA"
<!-- - let C = PCA projection -->
<!-- - let F & G be Gaussian with same covariance -->
- C<sup>PCA</sup> = 4K / (4 - K), where
- K = δ' Σ<sup>t</sup><sub>d</sub> δ
- so when δ is in the space spanned by the smaller eigenvectors, PCA discards nearly all the info
<br>
--
### Simple Example
- if Σ is diagonal with decreasing λ's,
- δ=(0,...,0,s),
- λ<sub>p</sub> + s<sup>2</sup>/4 < λ<sub>d</sub>
- C<sup>PCA</sup> = 0
- C<sup>LOL</sup> = s<sup>2</sup> / λ<sub>p</sub>
---
## "Thm C: [δ, U<sub>d</sub>] > U<sub>d</sub>"
- let U<sub>d</sub> be any matrix in R<sup>p x d</sup> with U<sub>d</sub> U<sub>d</sub>' = I
- arthimetic is messier
- nearly the same result as PCA
- basically, when δ and U<sub>d</sub> are nearly orthogonal, adding delta helps
---
### "Thm D: LOL > PCA as p increases"
- let γ = λ<sub>d</sub> - λ<sub>d+1</sub>
- let δ be sparse with probabilty ε an element is 0,
- o.w. it is Gaussian
<!-- with mean τ and standard deviation σ -->
- let p(1-ε) → θ
- then with probability at least ε<sup>d</sup>, C<sup>PCA</sup> = 0 < C<sup>LOL</sup>
- and this probability can be made arbitrarily close to 1
---
## "Thm E: LOL > PCA as n & p increases"
- when n/p → 0, all results trivially hold
<br>
- Suppose Σ is low rank + σ<sup>2</sup>I
- Suppose that: M log p ≤ log n ≤ M' log λ,
- provided M & M' are large enough
- estimates of C converge, so
- E [ C<sup>LOL</sup> ] > E[ C<sup>PCA</sup>]
---
## LOL > PCA Simulations
<img src="../Figs/plot_sims.png" STYLE="margin:auto; width:380px"/>
---
## LOL is fast
<img src="../Figs/scalability.png" STYLE="margin:auto; width:100%"/>
- utilize FlashX semi-external memory (SEM) computing
- optimal (linear) scale up and out
- SEM speed ≈ internal memory speed
- swap random projections (RP) with SVD for 10x speed improvement
- RP error rate ≈ SVD error rate
- ~3 minutes for a 2 terabyte dataset
---
## LOL > PCA Data
<img src="../Figs/plot_real.png" STYLE="margin:auto; WIDTH:100%;"/>
---
### LOL Hypothesis Testing & Regression
<img src="../Figs/regression_power.png" STYLE="margin:auto; WIDTH:100%;"/>
---
## Discussion
- simple supervised inference for wide data
- big data tools (eg, Spark, H20, VW) typically focus on large n
- algorithmic and theoretical generalizations straightforward
- open source implementations
<br>
<center>
<a href="http://neurodata.io/tools/LOL/">http://neurodataio/tools/LOL/</a>
</center>
---
class: center
<br>
# Questions?
## Hiring Postdocs & Software Engineers Now!
e: [jovo@jhu.edu](mailto:jovo@jhu.edu) |
w: [neurodata.io](http://neurodata.io), [gigantum.io](http://gigantum.io)
<img src="http://brainx.io/images/funding/nsf_fpo.png" STYLE="position:absolute; TOP:550px; LEFT:10px; HEIGHT:100px;"/>
<img src="http://brainx.io/images/funding/nih_fpo.png" STYLE="position:absolute; TOP:550px; LEFT:120px; HEIGHT:100px;"/>
<img src="http://brainx.io/images/funding/darpa_fpo.png" STYLE="position:absolute; TOP:550px; LEFT:230px; HEIGHT:100px;"/>
<img src="http://brainx.io/images/funding/iarpa_fpo.jpg" STYLE="position:absolute; TOP:550px; LEFT:430px; HEIGHT:100px;"/>
<img src="http://brainx.io/images/funding/kavli_fpo.png" STYLE="position:absolute; TOP:550px; LEFT:550px; HEIGHT:100px;"/>
<img src="http://brainx.io/images/funding/kndi_fpo.png" STYLE="position:absolute; TOP:550px; LEFT:650px; HEIGHT:100px;"/>
</textarea>
</body>
</html>