forked from spinynormal/DEC-SOP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdiff.cpp
688 lines (536 loc) · 21.2 KB
/
diff.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
#include "diff.h"
#include HDK STUFF
static PRM_Name scalarfield("Field", "Field");
//________________________________________________________________________________________________________________________ boringHdkstuff
void
newSopOperator(OP_OperatorTable *table)
{
OP_Operator *op;
op = new OP_Operator("ddg_TrigClosed", //internal name
"ddg_TrigClosed.v1", //UI Name
DIFF_SOP::myConstructor, //How to build the SOP
DIFF_SOP::MyTemplateList, //list of parameters
1, //min number of sources
1, //max number of inputs
0, //local variables
OP_FLAG_GENERATOR); //flag as a generator type
table->addOperator(op);
}
OP_Node * DIFF_SOP::myConstructor(OP_Network *net, const char *name, OP_Operator *op) {
return new DIFF_SOP(net, name, op);
}
static PRM_Name field("fieldop", "FieldOperation");
static PRM_Name fielparam[] =
{
PRM_Name("grad", "Gradient"),
PRM_Name("div", "Divergence"),
PRM_Name("curl", "Laplacian"),
PRM_Name("hod", "VectorDecomp"),
PRM_Name("vecsource", "VectorSource"),
PRM_Name(0)
};
enum
{
DIFF_SOP_grad, DIFF_SOP_div, DIFF_SOP_lap, DIFF_SOP_hod, DIFF_SOP_vecsource
};
static PRM_ChoiceList fieldmenu(PRM_CHOICELIST_SINGLE, fielparam);
PRM_Template DIFF_SOP::MyTemplateList[] = {
PRM_Template(PRM_STRING ,1, &scalarfield),
PRM_Template(PRM_ORD, 1, &field,0, &fieldmenu),
PRM_Template()
};
DIFF_SOP::DIFF_SOP(OP_Network *net, const char *name, OP_Operator *op)
: SOP_Node(net, name, op) {}
DIFF_SOP::~DIFF_SOP() {}
int
DIFF_SOP::fielchoice()
{
return evalInt(field.getToken(), 0, 0.0f);
}
//________________________________________________________________________________________________________________________ _ VectorDecomp
void DIFF_SOP::Vectordecomposition(GA_ROHandleV3 vectorfield, OP_Context &context) {
//http://courses.cms.caltech.edu/cs177/hmw/Hmw3.pdf
GA_Attribute *vec1 = gdp->addFloatTuple(GA_ATTRIB_PRIMITIVE, "a", 3);
GA_RWHandleV3 hedgvec1(vec1);
GA_Attribute *vec2 = gdp->addFloatTuple(GA_ATTRIB_PRIMITIVE, "b", 3);
GA_RWHandleV3 hedgvec2(vec2);
GA_Attribute *vec3 = gdp->addFloatTuple(GA_ATTRIB_PRIMITIVE, "c", 3);
GA_RWHandleV3 hedgvec3(vec3);
//_______________________________________________________________________ FaceIndicesEdges
int ptCount = gdp->getNumPoints();
int faceCount = gdp->getNumPrimitives();
//______________Vertices Matrix
Eigen::MatrixXd V(ptCount, 3);
int r = 0;
for (GA_Iterator it(gdp->getPointRange(NULL)); !it.atEnd(); ++it)
{
UT_Vector3 p = gdp->getPos3(*it);
V.row(r) = Eigen::Vector3d(p.x(), p.y(), p.z());
r++;
}
//______________Indices Matrix and Edge List
Eigen::MatrixXi F(faceCount, 3);
UT_Array< const GA_Primitive * >prims;
gdp->getPrimitivesOfType(GA_PRIMPOLY, prims);
r = 0;
// init sort/stack arrays
edgeList.setSize(0);
UT_Array <UT_Vector2>stack;
stack.setSize(0);
// Loop trough faces, if twinhalfedge and findable in stack -> pass,
//if not. mark as visited by adding in stack array,
//swap for corresponding twinhalfedge
//
for (int i = 0; i<prims.size(); ++i) {
const GA_Primitive *prim = prims(i);
F.row(r) = Eigen::Vector3i(prim->getPointIndex(0), prim->getPointIndex(1), prim->getPointIndex(2));
GEO_Hedge curr = polinterface->polyHedge(i);
GEO_Hedge next = polinterface->nextPrimitiveHedge(curr);
GEO_Hedge prev = polinterface->prevPrimitiveHedge(curr);
UT_Array<int>::iterator it;
if (polinterface->isPrimary(prev) != 1) {
int dst = polinterface->dstPoint(prev);
int src = polinterface->srcPoint(prev);
bool it = stack.find(UT_Vector2(dst, src));
if (it != 1) {
stack.append(UT_Vector2(src, dst));
edgeList.append(UT_Vector2(dst, src));
}
}
else {
edgeList.append(UT_Vector2(polinterface->dstPoint(prev), polinterface->srcPoint(prev)));
it = find(primhedgelist.begin(), primhedgelist.end(), polinterface->hedgePoly(prev));
if (it == primhedgelist.end())
primhedgelist.append(polinterface->hedgePoly(prev));
}
if (polinterface->isPrimary(next) != 1) {
int dst = polinterface->dstPoint(next);
int src = polinterface->srcPoint(next);
bool it = stack.find(UT_Vector2(dst, src));
if (it != 1) {
stack.append(UT_Vector2(src, dst));
edgeList.append(UT_Vector2(dst, src));
}
}
else {
edgeList.append(UT_Vector2(polinterface->dstPoint(next), polinterface->srcPoint(next)));
it = find(primhedgelist.begin(), primhedgelist.end(), polinterface->hedgePoly(next));
if (it == primhedgelist.end())
primhedgelist.append(polinterface->hedgePoly(next));
}
if (polinterface->isPrimary(curr) != 1) {
int dst = polinterface->dstPoint(curr);
int src = polinterface->srcPoint(curr);
bool it = stack.find(UT_Vector2(dst, src));
if (it != 1) {
stack.append(UT_Vector2(src, dst));
edgeList.append(UT_Vector2(dst, src));
}
}
else {
edgeList.append(UT_Vector2(polinterface->dstPoint(curr), polinterface->srcPoint(curr)));
it = find(primhedgelist.begin(), primhedgelist.end(), polinterface->hedgePoly(curr));
if (it == primhedgelist.end())
primhedgelist.append(polinterface->hedgePoly(curr));
}
r++;
}
SparseMat d0(edgeList.size(), gdp->getNumPoints());
d0 = DIFF_SOP::deriative0(d0);
SparseMat d1(gdp->getNumPrimitives(), edgeList.size());
d1 = DIFF_SOP::deriative1(d1);
SparseMat hstar2(edgeList.size(), edgeList.size());
hstar2 = DIFF_SOP::star2(hstar2);
SparseMat hstar2invert(edgeList.size(), edgeList.size());
hstar2invert = DIFF_SOP::star2inv(hstar2invert);
//___________________________________________________________________________ 1-form
//
UT_Array<fpreal>oneform;
covector(oneform, vectorfield);
// __________________________________________________________________________ δdα = δω
Eigen::Map<EigenMat>w(oneform.data(), oneform.size(), 1);
SparseMat Laplace;
EigenMat da(gdp->getNumPoints(), 1);
EigenMat oneformscalar(edgeList.size(), 1);
Eigen::SimplicialLDLT<SparseMat> solver;
// δ = d0dual *1
// ∆ = δ * doprimal
Laplace = (d0.transpose() * hstar2 * d0);
// 0-form L-matrix v*v
solver.compute(Laplace);
// ∆α =δω
da = solver.solve(d0.transpose() * hstar2 *w);
//δdα
oneformscalar = d0 * da;
// _________________________________________________________________________ dδβ = dw
//
SparseMat Laplace2;
EigenMat twoformscalar(gdp->getNumPrimitives(), 1);
EigenMat beta(edgeList.size(), 1);
// 1/diagonalElement
Eigen::SparseLU<SparseMat> lu;
//δ = *1(-1) d1dual
//∆ = δd1primal
Laplace2 = (d1 * hstar2invert * d1.transpose());
// 2-form L-matrix f*f
lu.compute(Laplace2);
//∆β = dw
twoformscalar = lu.solve(d1*w);
//δβ
beta = hstar2invert * d1.transpose() * twoformscalar;
// ____________________________________________________________________ y
//EigenMat harmonic;
EigenMat harmonic;
harmonic = w - da - beta;
//___________________________________________________________________________ Vectorfieldinterpolation
UT_Array<fpreal>curflfree;
curflfree.setSize(oneformscalar.size());
UT_Array<fpreal>da2;
da2.setSize(beta.size());
UT_Array<fpreal>da3;
da3.setSize(harmonic.size());
Eigen::Map<EigenMat>(curflfree.data(), oneformscalar.rows(), oneformscalar.cols()) = oneformscalar;
Eigen::Map<EigenMat>(da2.data(), beta.rows(), beta.cols()) = beta;
Eigen::Map<EigenMat>(da3.data(), harmonic.rows(), harmonic.cols()) = harmonic;
for (int i = 0; i < gdp->getNumPrimitives(); i++) {
hedgvec1.set(i, oneformtofield(curflfree, i));
hedgvec2.set(i, oneformtofield(da2, i));
hedgvec3.set(i, oneformtofield(da3, i));
}
}
//_______________________________________________________________________________ DecOperators
//_______________________deriative0form
//edge-node incidence matrix, providing a gradient operator
//E*P
DIFF_SOP::SparseMat DIFF_SOP::deriative0(SparseMat d0) {
std::vector<coeffs> tripletList;
tripletList.reserve(edgeList.size()*gdp->getNumPoints());
for (int edge = 0; edge < edgeList.size(); ++edge) {
GA_Offset minus = gdp->pointOffset(edgeList.data()[edge].x());
GA_Offset plus = gdp->pointOffset(edgeList.data()[edge].y());
tripletList.push_back(coeffs(edge, minus, -1));
tripletList.push_back(coeffs(edge, plus, 1));
}
d0.setFromTriplets(tripletList.begin(), tripletList.end());
return d0;
}
//_______________________deriative1form
// important condition wich needs to be verified is, for an edge shared by two faces,
// for each face it should have an opposite orientation
//F*E
DIFF_SOP::SparseMat DIFF_SOP::deriative1(SparseMat d1) {
fpreal val;
int edgeindex;
std::vector<coeffs> tripletList;
tripletList.reserve(gdp->getNumPrimitives()* edgeList.size());
for (int prim = 0; prim < gdp->getNumPrimitives(); ++prim) {
GEO_Hedge hedge = polinterface->polyHedge(prim);
do {
hedge = polinterface->nextPrimitiveHedge(hedge);
int ix = DIFF_SOP::getedgeix(hedge);
UT_Vector2 a = edgeList.data()[ix];
GEO_Hedge ahedge = polinterface->findHedgeWithEndpoints(a.y(), a.x());
UT_Vector2 tmpa = UT_Vector2(polinterface->dstPoint(hedge), polinterface->srcPoint(hedge));
if (a == tmpa)
val = 1.0;
else val = -1.0;
tripletList.push_back(coeffs(prim, ix, val));
} while (hedge != polinterface->polyHedge(prim));
}
d1.setFromTriplets(tripletList.begin(), tripletList.end());
return d1;
}
//P*P
DIFF_SOP::SparseMat DIFF_SOP::star1(SparseMat star1) {
int ptCount = gdp->getNumPoints();
std::vector<coeffs> tripletList;
tripletList.reserve(gdp->getNumPoints() * gdp->getNumPoints());
UT_Array<int> adjacentfaces;
fpreal dualarea = 0;
UT_ValArray< GA_OffsetArray> neighbourArray;
gdp->buildRingZeroPoints(neighbourArray, NULL);
for (int pt = 0; pt < ptCount; ++pt) {
GA_OffsetArray neighbours = GA_OffsetArray(neighbourArray[pt]);
for (int j = 0; j < neighbours.size(); j++) {
GEO_Hedge hedge = polinterface->findHedgeWithEndpoints(pt, neighbours[j]);
GEO_Hedge nt = polinterface->nextEquivalentHedge(hedge);
UT_Array<int>::iterator it;
it = find(adjacentfaces.begin(), adjacentfaces.end(), polinterface->hedgePoly(hedge));
if (it == adjacentfaces.end()) {
adjacentfaces.append(polinterface->hedgePoly(hedge));
}
it = find(adjacentfaces.begin(), adjacentfaces.end(), polinterface->hedgePoly(nt));
if (it == adjacentfaces.end()) {
adjacentfaces.append(polinterface->hedgePoly(nt));
}
}
for (int i = 0; i < adjacentfaces.size(); i++) {
GEO_Primitive *prim = gdp->getGEOPrimitive(adjacentfaces.data()[i]);
dualarea += prim->calcArea();
}
dualarea = (dualarea / 3.0);
tripletList.push_back(coeffs(pt, pt, dualarea));
}
star1.setFromTriplets(tripletList.begin(), tripletList.end());
return star1;
}
//E*E
DIFF_SOP::SparseMat DIFF_SOP::star2(SparseMat star2) {
std::vector<coeffs> tripletList;
tripletList.reserve(edgeList.size()* edgeList.size());
for (int edge = 0; edge < edgeList.size(); ++edge) {
GA_Offset pt1 = gdp->pointOffset(edgeList.data()[edge].x());
GA_Offset pt2 = gdp->pointOffset(edgeList.data()[edge].y());
GEO_Hedge cotAlphaHe = polinterface->findHedgeWithEndpoints(pt1, pt2);
GEO_Hedge cotBetaHe = polinterface->nextEquivalentHedge(cotAlphaHe);
fpreal cotW = (DIFF_SOP::cotangent(cotAlphaHe) + DIFF_SOP::cotangent(cotBetaHe)) / 2.0;
tripletList.push_back(coeffs(edge, edge, cotW));
}
star2.setFromTriplets(tripletList.begin(), tripletList.end());
return star2;
}
DIFF_SOP::SparseMat DIFF_SOP::star2inv(SparseMat star2) {
std::vector<coeffs> tripletList;
tripletList.reserve(edgeList.size()* edgeList.size());
for (int edge = 0; edge < edgeList.size(); ++edge) {
GA_Offset pt1 = gdp->pointOffset(edgeList.data()[edge].x());
GA_Offset pt2 = gdp->pointOffset(edgeList.data()[edge].y());
GEO_Hedge cotAlphaHe = polinterface->findHedgeWithEndpoints(pt1, pt2);
GEO_Hedge cotBetaHe = polinterface->nextEquivalentHedge(cotAlphaHe);
fpreal cotW = (DIFF_SOP::cotangent(cotAlphaHe) + DIFF_SOP::cotangent(cotBetaHe)) / 2.0;
if (cotW != 0) cotW = 1 / cotW;
tripletList.push_back(coeffs(edge, edge, cotW));
}
star2.setFromTriplets(tripletList.begin(), tripletList.end());
return star2;
}
//F*F
DIFF_SOP::SparseMat DIFF_SOP::star3(SparseMat star3) {
std::vector<coeffs> tripletList;
tripletList.reserve(gdp->getNumPrimitives()* gdp->getNumPrimitives());
;
for (int prim = 0; prim < gdp->getNumPrimitives(); ++prim) {
GEO_Primitive *Geoprim = gdp->getGEOPrimitive(prim);
fpreal area = 1 / Geoprim->calcArea();
tripletList.push_back(coeffs(prim, prim, area));
}
star3.setFromTriplets(tripletList.begin(), tripletList.end());
return star3;
}
//_____________________________________________________________________________________________ Helpers
void DIFF_SOP::covector(UT_Array <fpreal>&oneformlist, GA_ROHandleV3 &vectorfield) {
UT_Vector3 vfield;
UT_Vector3 vfieldtwin;
UT_Vector3 Plus;
fpreal oneform;
for (int i = 0; i < edgeList.size(); i++) {
GA_Offset pt1 = gdp->pointOffset(edgeList.data()[i].x());
GA_Offset pt2 = gdp->pointOffset(edgeList.data()[i].y());
GEO_Hedge temp = polinterface->findHedgeWithEndpoints(pt1, pt2);
GEO_Hedge next = polinterface->nextEquivalentHedge(temp);
UT_Vector3 df = gdp->getPos3(pt2) - gdp->getPos3(pt1);
if (polinterface->isBoundaryHedge(temp) != 1) {
vfield = vectorfield.get(polinterface->hedgePoly(temp));
}
else vfield = 0;
if (polinterface->isBoundaryHedge(next) != 1) {
vfieldtwin = vectorfield.get(polinterface->hedgePoly(next));
}
else vfieldtwin = 0;
Plus = (vfield + vfieldtwin)* .5;
oneform = dot(Plus, df);
oneformlist.append(oneform);
}
}
UT_Vector3 DIFF_SOP::oneformtofield(UT_Array<fpreal> &oneformlist, GA_Offset primoffset) {
GEO_Primitive *prim = gdp->getGEOPrimitive(primoffset);
GEO_Hedge Hedge1 = polinterface->polyHedge(primoffset);
GEO_Hedge hnext = polinterface->nextPrimitiveHedge(Hedge1);
GEO_Hedge hprev = polinterface->prevPrimitiveHedge(Hedge1);
UT_Vector3 prev = gdp->getPos3(polinterface->srcPoint(hprev)) - gdp->getPos3(polinterface->dstPoint(hprev));
UT_Vector3 next = gdp->getPos3(polinterface->srcPoint(hnext)) - gdp->getPos3(polinterface->dstPoint(hnext));
UT_Vector3 cur = gdp->getPos3(polinterface->srcPoint(Hedge1)) - gdp->getPos3(polinterface->dstPoint(Hedge1));
UT_Vector3 np = cur - next;
UT_Vector3 pc = prev - cur;
UT_Vector3 nc = next - prev;
UT_Vector3 N = prim->computeNormal();
N.normalize();
fpreal area = prim->calcArea();
int ixhprev = getedgeix(hprev);
int ixhnext = getedgeix(hnext);
int hedge1 = getedgeix(Hedge1);
fpreal edge1 = oneformlist.data()[ixhprev];
fpreal edge2 = oneformlist.data()[ixhnext];
fpreal edge3 = oneformlist.data()[hedge1];
UT_Vector2 a = edgeList.data()[ixhprev];
UT_Vector2 b = edgeList.data()[ixhnext];
UT_Vector2 c = edgeList.data()[hedge1];
UT_Vector2 tmpa = UT_Vector2(polinterface->dstPoint(hprev), polinterface->srcPoint(hprev));
UT_Vector2 tmpb = UT_Vector2(polinterface->dstPoint(hnext), polinterface->srcPoint(hnext));
UT_Vector2 tmpc = UT_Vector2(polinterface->dstPoint(Hedge1), polinterface->srcPoint(Hedge1));
if (a != tmpa) edge1 *= -1;
if (b != tmpb) edge2 *= -1;
if (c != tmpc) edge3 *= -1;
return cross(N, np * edge1 + pc *edge2 + nc * edge3) / ((2.0 * area));
}
//pretty weak TODO
/*
int DIFF_SOP::getedgeix(GEO_Hedge h, UT_Array<UT_Vector2> &edgeList) {
int primnum;
if (polinterface->isPrimary(h) != 1) {
GEO_Hedge twin = polinterface->sym(h);
primnum = polinterface->hedgePoly(twin);
}
else {
for (auto it = primhedgelist.begin(); it != primhedgelist.end(); it++) {
if (polinterface->hedgePoly(h) == *it);
//std::cout << "y" << (it)-primhedgelist.begin() << std::endl;
return (it)-primhedgelist.begin();
}
};
bool cond = 0;
UT_Array<UT_Vector2>::iterator start;
start = edgeList.begin() + (primnum * 3);
UT_Array<UT_Vector2>::iterator end = start + 3;
UT_Vector2 tmp = UT_Vector2(polinterface->dstPoint(h), polinterface->srcPoint(h));
UT_Vector2 swp = UT_Vector2(polinterface->srcPoint(h), polinterface->dstPoint(h));
//std::cout << tmp << std::endl;
int t = 0;
do {
int primtmp = primnum - t;
start = edgeList.begin() + (primtmp * 3);
for (auto it = start; it != end; it++) {
// std::cout << *it << "test" << std::endl;
if (tmp == *it) {
cond = 1;
// std::cout << ((it)-start) + (primtmp * 3) << "edge" << std::endl;
return ((it)-start) + (primtmp * 3);
}
if (swp == *it) {
cond = 1;
// std::cout << ((it)-start) + (primtmp * 3) << "edge2" << std::endl;
return (it - start) + (primtmp * 3);
}
}
t++;
} while (cond = 1);
}
*/
int DIFF_SOP::getedgeix(GEO_Hedge h) {
UT_Vector2 tmp = UT_Vector2(polinterface->dstPoint(h), polinterface->srcPoint(h));
UT_Vector2 swp = UT_Vector2(polinterface->srcPoint(h), polinterface->dstPoint(h));
if (edgeList.find(tmp) == -1)
return edgeList.find(swp);
else
return edgeList.find(tmp);
}
fpreal DIFF_SOP::cotangent(GEO_Hedge halfedge) {
GEO_Hedge hnext = polinterface->nextPrimitiveHedge(halfedge);
GEO_Hedge hprev = polinterface->prevPrimitiveHedge(halfedge);
UT_Vector3F nexta = polinterface->hedgeVector(hnext);
nexta.negate();
UT_Vector3F prev = polinterface->hedgeVector(hprev);
return dot(prev, nexta) / cross(nexta, prev).length();
}
//_____________________________________________________________________________________________________________________________Gradient
void DIFF_SOP::gradient(GA_ROHandleF scalarfield, GA_Offset primOffset) {
GA_Attribute *vec1 = gdp->addFloatTuple(GA_ATTRIB_PRIMITIVE, "Gradient", 3);
GA_RWHandleV3 hedgvec1(vec1);
GEO_Hedge Hedge1 = polinterface->polyHedge(primOffset);
GA_Offset vtx0 = polinterface->srcPoint(Hedge1);
GEO_Hedge hnext = polinterface->nextPrimitiveHedge(Hedge1);
GA_Offset vtx1 = polinterface->srcPoint(hnext);
GEO_Hedge hprev = polinterface->prevPrimitiveHedge(Hedge1);
GA_Offset vtx2 = polinterface->srcPoint(hprev);
UT_Vector3F prev = polinterface->hedgeVector(hprev);
UT_Vector3F next = polinterface->hedgeVector(hnext);
UT_Vector3F curr = polinterface->hedgeVector(Hedge1);
UT_Vector3F n = cross(next, prev); n.normalize();
fpreal area = gdp->getGEOPrimitive(primOffset)->calcArea();
UT_Vector3F grad =
cross(n, next) * scalarfield.get(vtx0, 0) +
cross(n, prev) * scalarfield.get(vtx1, 0) +
cross(n, curr) * scalarfield.get(vtx2, 0);
grad = grad / (2.0 * area);
hedgvec1.set(primOffset, grad);
}
//_____________________________________________________________________________________________________________________________Divergence
void DIFF_SOP::divergence(GA_ROHandleV3 vectorfield, GA_Offset primOffset) {
GA_Attribute *div = gdp->addFloatTuple(GA_ATTRIB_POINT, "divergence", 1);
GA_RWHandleF divhandle(div);
fpreal t = 0;
GEO_Primitive *prim = gdp->getGEOPrimitiveByIndex(primOffset);
std::vector<int> primpoints;
UT_Vector3F grad = vectorfield(primOffset);
for (int i = 0; i < 3; i++) {
GA_Offset ptnum = prim->getPointOffset(i);
primpoints.push_back(ptnum);
}
std::vector<int> a = primpoints;
std::vector<int> b = primpoints;
std::rotate(a.begin(), a.begin() + 1, a.end());
primpoints.insert(primpoints.end(), a.begin(), a.end());
std::rotate(b.rbegin(), b.rbegin() + 1, b.rend());
primpoints.insert(primpoints.end(), b.begin(), b.end());
for (auto it = primpoints.begin(); it != primpoints.end(); advance(it, 3)) {
UT_Vector3F curr = gdp->getPos3(*it) - gdp->getPos3(*(it + 1));
UT_Vector3F next = gdp->getPos3(*(it + 2)) - gdp->getPos3(*(it + 1));
UT_Vector3F prev = gdp->getPos3(*it) - gdp->getPos3(*(it + 2));
fpreal cot1 = dot(prev, -next) / cross(prev, -next).length();
fpreal cot2 = dot(-curr, next) / cross(-curr, next).length();
t = cot1 * (dot(curr, grad)) + cot2 * (dot(-prev, grad));
divhandle.add(*it, t);
}
}
//__________________________________________________________________________________________________________________________COOK
OP_ERROR
DIFF_SOP::cookMySop(OP_Context &context) {
OP_Node::flags().timeDep = 1;
int fields = fielchoice();
OP_Node::flags().timeDep = 1;
fpreal now = context.getTime();
OP_AutoLockInputs inputs(this);
if (inputs.lock(context) >= UT_ERROR_ABORT)
return error();
duplicateSource(0, context);
polinterface = new GEO_PolyInterface(gdp);
UT_String scalarname;
SCALAR(scalarname, now);
if (!scalarname.isstring()) { addMessage(SOP_ATTRIBUTE_INVALID, "field parameter is not defined"); }
else {
const GA_Attribute *ah = gdp->findAttribute(GA_ATTRIB_POINT, scalarname);
const GA_Attribute *dh = gdp->findAttribute(GA_ATTRIB_PRIMITIVE, scalarname);
if (!ah) {
addWarning(SOP_ATTRIBUTE_INVALID, "no field values found");
}
else {
if (gdp->findPointAttribute(scalarname)->getTupleSize() < 3) {
sclar = gdp->findFloatTuple(GA_ATTRIB_POINT, scalarname, 1);
}
if (gdp->findPointAttribute(scalarname)->getTupleSize() >= 3) {
vectorfield = gdp->findFloatTuple(GA_ATTRIB_POINT, scalarname, 3);
}
}
if (dh) {
vectorfield = gdp->findFloatTuple(GA_ATTRIB_PRIMITIVE, scalarname, 3);
DIFF_SOP::clearErrors();
}
}
if (sclar.isValid()) {
if (fields == DIFF_SOP_grad) {
for (int j = 0; j < gdp->getNumPrimitives(); j++) { gradient(sclar, j); }
}
else { gdp->destroyAttribute(GA_ATTRIB_PRIMITIVE, "Gradient", 0); }
}
if (vectorfield.isValid()) {
if (fields == DIFF_SOP_div) {
for (int j = 0; j < gdp->getPrimitiveRange().getEntries(); j++) { divergence(vectorfield, j); }
}
else { gdp->destroyAttribute(GA_ATTRIB_POINT, "Divergece", 0); }
if (fields == DIFF_SOP_hod) {
Vectordecomposition(vectorfield, context);
}
else { gdp->destroyAttribute(GA_ATTRIB_POINT, "HodgeDecomp", 0); }
}
return error();
}