Skip to content

Latest commit

 

History

History
39 lines (27 loc) · 1.12 KB

README.md

File metadata and controls

39 lines (27 loc) · 1.12 KB

Build your own RAG and run it locally on your laptop: ColBERT + DSPy + Streamlit

Tutorial for Generative AI beginners: let’s build a very simple RAG (Retrieval Augmented Generation) system locally, step-by-step.

Medium post: https://towardsdatascience.com/rag-on-your-laptop-colbert-dspy-streamlit-c206ea92188f

Environment setup

conda create -n easyrag -c nvidia -c conda-forge -v python==3.9 cuda-toolkit==12.4.0 jupyterlab==4.1.4 ipywidgets==8.1.2 wikipedia==1.4.0 mypy==1.8.0 accelerate==0.27.0 streamlit==1.29.0 pyarrow==14.0.0
conda activate easyrag
pip install colbert-ai[torch,faiss-gpu]==0.2.19 dspy-ai==2.3.6 

export CUDA_HOME=$CONDA_PREFIX
export LIBRARY_PATH=$CONDA_PREFIX/lib
export LD_LIBRARY_PATH=$CONDA_PREFIX/lib

Sample data download

python fringe_wikipedia.py

ColBERTv2 indexing and retrieval

wget https://downloads.cs.stanford.edu/nlp/data/colbert/colbertv2/colbertv2.0.tar.gz
tar -xvzf downloads/colbertv2.0.tar.gz

python colbert_index.py 
python colbert_server.py &  # It could take some seconds

Running the chatbot interface

streamlit run chatbot.py