-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathrender_final_sweep.py
executable file
·120 lines (87 loc) · 3.96 KB
/
render_final_sweep.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
#!/usr/bin/env python3
# Copyright © Niantic, Inc. 2023.
import os
from pathlib import Path
import logging
import argparse
import torch
import dataset_io
from ace_visualizer import ACEVisualizer
from distutils.util import strtobool
logging.basicConfig(level=logging.INFO)
_logger = logging.getLogger(__name__)
def get_pose_iteration_dict(last_pose_file, max_iteration, confidence_threshold):
with open(last_pose_file, 'r') as f:
poses = f.readlines()
# dictionary contains the first iteration where an image was registered
pose_dict = {}
# initialise each image with the last iteration
for pose in poses:
img_file = pose.split()[0]
pose_dict[img_file] = max_iteration
# loop through all pose files backwards and overwrite the image iteration
for iteration in reversed(range(max_iteration)):
pose_file = last_pose_file.stem.split("_")
pose_file[-1] = f"iteration{iteration}"
pose_file = "_".join(pose_file)
if iteration == 0:
pose_files = list(last_pose_file.parent.glob(f"{pose_file}_seed[0-9].txt"))
if len(pose_files) > 0:
pose_file = pose_files[0]
else:
pose_file = f"{pose_file[6:-1]}1_refined_poses.txt"
pose_file = opt.pose_file.parent / pose_file
else:
pose_file += ".txt"
pose_file = last_pose_file.parent / pose_file
with open(pose_file, 'r') as f:
current_poses = f.readlines()
for pose in current_poses:
img_file = pose.split()[0]
confidence = float(pose.split()[-1])
if confidence > confidence_threshold:
pose_dict[img_file] = iteration
return pose_dict
def _strtobool(x):
return bool(strtobool(x))
if __name__ == '__main__':
parser = argparse.ArgumentParser(
description='Renders additional frames at the end of a reconstruction visualisation.',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('render_folder', type=Path)
parser.add_argument('--render_camera_z_offset', type=int, default=4,
help='zoom out of the scene by moving render camera backwards, in meters')
parser.add_argument('--render_marker_size', type=float, default=0.03)
opt = parser.parse_args()
device = torch.device("cuda")
pose_file_conf_threshold = 1000
# find render state of last iteration
max_iteration = 100
state_file_found = False
for iteration in reversed(range(max_iteration)):
state_file = opt.render_folder / f"iteration{iteration}_register.pkl"
if os.path.isfile(state_file):
state_file_found = True
break
if not state_file_found:
_logger.error(f"Could not find a state file. Last tried: {state_file}")
exit()
pose_file = opt.render_folder.parent / f"poses_iteration{iteration}.txt"
if not os.path.isfile(pose_file):
_logger.error(f"Could not find a pose file: {pose_file} does not exist.")
exit()
# get information when which image was registered
pose_dict = get_pose_iteration_dict(pose_file, iteration, confidence_threshold=pose_file_conf_threshold)
# load poses
rgb_files, poses, _ = dataset_io.load_dataset_ace(pose_file, pose_file_conf_threshold)
poses = [pose.numpy() for pose in poses]
pose_iterations = [pose_dict[rgb_file] for rgb_file in rgb_files]
# setup visualiser
visualiser = ACEVisualizer(opt.render_folder, flipped_portait=False, map_depth_filter=100,
mapping_state_file_name=state_file.name, marker_size=opt.render_marker_size)
visualiser.render_final_sweep(
frame_count=150,
camera_z_offset=opt.render_camera_z_offset,
poses=poses,
pose_iterations=pose_iterations,
total_poses=len(pose_dict))