-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_building-v4.Rmd
242 lines (188 loc) · 5.62 KB
/
model_building-v4.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
---
title: "Model Building v4"
output: html_notebook
---
```{r setup, include=F}
rm(list = ls())
load("data/data_preparation.RData")
```
```{r, message=FALSE}
library(kerasR)
library(keras)
library(dplyr)
library(magrittr)
library(caret)
library(pROC)
```
## 1. Spliting Dataset into Training and Test
```{r echo = F}
set.seed(2019)
train_index <- createDataPartition(
factor(invoiced),
p = 0.8,
list = F,
times = 1
)
```
### 1.1 Splitting `Invoiced` into Training, Validation and Test
```{r}
set.seed(2019)
val_index <- createDataPartition(
factor(invoiced[train_index, ]),
p = 0.2,
list = F,
times = 1
)
invoiced_train <- invoiced[train_index, ][-val_index] %>% as.array()
invoiced_val <- invoiced[train_index, ][val_index] %>% as.array()
invoiced_test <- invoiced[-train_index,] %>% as.array()
cat(" Shape of Invoiced Train:", dim(invoiced_train), "\n",
"Shape of Invoiced Val:", dim(invoiced_val), "\n",
"Shape of Invoiced Test:", dim(invoiced_test))
```
```{r}
print("--Distribution of Classes in Train--")
print(as.factor(invoiced_train) %>% summary())
print("--Distribution of Classes in Validation--")
print(as.factor(invoiced_val) %>% summary())
print("--Distribution of Classes in Test--")
print(as.factor(invoiced_test) %>% summary())
```
### 1.2 Splitting `Call Text` into Training, Validation and Test
```{r}
call_text_train <- call_text_data[train_index,][-val_index,] %>% as.array()
call_text_val <- call_text_data[train_index,][val_index,] %>% as.array()
call_text_test <- call_text_data[-train_index,]
cat(" Shape of Call Text Train:", dim(call_text_train), "\n",
"Shape of Call Text Val:", dim(call_text_val), "\n",
"Shape of Call Text Test:", dim(call_text_test))
```
### 1.2 Splitting `Billing Notes` into Training, Validation and Test
```{r}
billing_notes_train <- billing_notes_data[train_index,][-val_index,] %>% as.array()
billing_notes_val <- billing_notes_data[train_index,][val_index,] %>% as.array()
billing_notes_test <- billing_notes_data[-train_index,]
cat(" Shape of Billing Notes Train:", dim(billing_notes_train), "\n",
"Shape of Billing Notes Val:", dim(billing_notes_val), "\n",
"Shape of Billing Notes Test:", dim(billing_notes_test))
```
### 1.3 Splitting `Auxilary` Data into Training, Validation and Test
```{r}
auxillaries_train <- auxillaries[train_index,][-val_index,] %>% as.array()
auxillaries_val <- auxillaries[train_index,][val_index,] %>% as.array()
auxillaries_test <- auxillaries[-train_index,]
cat(" Shape of Auxillaries Train:", dim(auxillaries_train), "\n",
"Shape of Auxillaries Val:", dim(auxillaries_val), "\n",
"Shape of Auxillaries Test:", dim(auxillaries_test))
```
## 2. Merging Multiple Inputs
### 2.1 Creating The Input Layers
```{r}
call_text_layer <- layer_input(
shape = c(CONSTANTS$MAX_LEN),
name = "call_text_layer"
)
billing_notes_layer <- layer_input(
shape = c(CONSTANTS$MAX_LEN),
name = "billing_notes_layer"
)
auxiliary_layer <- layer_input(shape = c(dim(auxillaries)[2]), name = 'auxiliary_layer')
```
### 2.2 Creating The Embedding layers
```{r}
call_text_embedding <- call_text_layer %>%
layer_embedding(
input_dim = CONSTANTS$MAX_WORDS,
output_dim = 512,
input_length = CONSTANTS$MAX_LEN,
name = "call_text_embedding") %>%
layer_dropout(0.6) %>%
layer_flatten()
billing_notes_embedding <- billing_notes_layer %>%
layer_embedding(
input_dim = CONSTANTS$MAX_WORDS,
output_dim = 512,
input_length = CONSTANTS$MAX_LEN,
name = "billing_notes_embedding") %>%
layer_dropout(0.6) %>%
layer_flatten()
```
### 2.3 Merging Input and Auxilary Layers
```{r}
main_output <- layer_concatenate(c(call_text_embedding, billing_notes_embedding, auxiliary_layer)) %>%
layer_dropout(0.6) %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 64, activation = 'relu') %>%
layer_dense(units = 1, activation = 'sigmoid', name = 'main_output')
```
### 2.4 Building the Model
```{r}
model <- keras_model(
inputs = c(call_text_layer, billing_notes_layer, auxiliary_layer),
outputs = main_output
)
```
```{r}
model %>% compile(
optimizer = 'rmsprop',
loss = 'binary_crossentropy',
metric = c("accuracy")
)
summary(model)
```
```{r plot-model, eval = F}
plot_model(model, show_shapes = T)
```
### 2.5 Training The Model
```{r echo = T, results = 'hide'}
history <- model %>% fit(
x = list(call_text_train, billing_notes_train, auxillaries_train),
y = invoiced_train,
epochs = 5,
batch_size = CONSTANTS$BATCH_SIZE_CPU,
validation_data = list(list(call_text_val, billing_notes_val, auxillaries_val), invoiced_val)
)
#save(history, file = "data/history_model_v4.RData")
#save_model_hdf5(model, filepath = "data/fitted_model_v4")
#save_model_weights_hdf5(model, filepath = "data/fitted_model_v4_weights")
```
```{r}
plot(history, method = c("ggplot2"))
```
### 2.6 Evaluating The Model
```{r echo = T, results = 'hide'}
model_result <- model %>%
evaluate(
list(call_text_test, billing_notes_test, auxillaries_test),
invoiced_test
)
```
```{r}
cat('Test loss:', model_result$loss, "\n")
cat('Test accuracy:', model_result$acc, "\n")
```
#### 2.6.1 Model's ROC & AUC
```{r}
pred_probs <- predict(model,
list(call_text_test, billing_notes_test, auxillaries_test),
batch_size = CONSTANTS$BATCH_SIZE_CPU
)
dim(pred_probs)
```
```{r}
roc_result <- roc(invoiced_test, as.vector(pred_probs))
roc_result
```
```{r}
plot(roc_result, col='red', lwd=2)
```
#### 2.6.2 Model's Confusion Matrix
```{r}
pred_class <- as.numeric(pred_probs > .50) %>% as.factor()
confusionMatrix(
pred_class,
as.factor(invoiced_test),
mode = "prec_recall"
)
```