-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain.m
223 lines (203 loc) · 12.3 KB
/
main.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
clear all
close all
clc
addpath("datasets\")
%% Select Dataset:
ds = 0; % 0: KITTI, 1: Malaga, 2: parking
%% Set the Parameters:
%% 0: KITTI
% initialization:
params0.ds = 0; %dataset label
params0.init_frames = [0 4]; %frame pair used for initilization/bootstrapping
params0.feature_detector_init = @(x)detectMinEigenFeatures(x,'MinQuality',0.01,'FilterSize',7); %feature detector initialization
params0.extract_feature_init = @(x,y)extractFeatures(x,y,'BlockSize',11); %feature extractor initialization
params0.estimate_fundamental_matrix = @(x,y)estimateFundamentalMatrix(x,y,'Method','RANSAC','NumTrials',50000,'DistanceThreshold',1,'Confidence',99.99); %estimate fundamental matrix function initialization
params0.init_min_keypoints = 0; %minimum number of keypoints required after initialization (set to 0 to disable)
% processFrame:
params0.alpha_threshold = 0.25/180*pi; % threshold angle to add candidate
params0.reprojection_error_threshold = 1; % reprojection error threshold to add candidate
params0.min_keypoints_threshold = 80; %increase reprojection error threshold for candidates for one iteration if number of tracked keypoints drops below this value (0 deactivates this feature)
params0.feature_detector = @(x,y,z)detectMinEigenFeatures(x,'MinQuality',y,'FilterSize',z); %feature detector
params0.feature_quality = 0.01; %quality of the detected Shi-Tomasi features
params0.filter_size = 7; %filter size of the Shi-Tomasi feature detector
params0.candidates_object = @cornerPoints; %feature points object
params0.estimate_world_camera_pose = @(x,y,z)estimateWorldCameraPose(x,y,z,'MaxReprojectionError',1,'Confidence',99.99,'MaxNumTrials',25000); %estimate world camera pose function
params0.pixel_distance_threshold = 2; %distance threshold for detecting new features in pixels
params0.select_uniform_threshold = 150; %threshold for the maximum number of new candidates to track - candidates are sampled uniformly if more new candidates than this are found (set to very large value to disable)
params0.KLT = [4,1,5,50]; %arguments of the KLT track - [# pyramid levels, forward-backward error threshold, block size, maximum iterations]
params0.BA_n_views = 10; %size of the BA sliding window for KITTI
params0.BA_absolute_tolerance = 0.01; %target reprojection error of BA (set to very low values to use gradient as termination criterion for the optimization)
%plotting
params0.n_current_landmarks_plotted = 150; %maximum number of current landmarks to plot in local trajectory
params0.percentile_all_landmarks = 75; %upper percentile boundary for current landmarks to plot in full trajectory
params0.past_poses_plotted = 20; %past poses to plot in local trajectory
%% 1: Malaga:
% initialization:
params1.ds = 1; %dataset label
params1.init_frames = [1 4]; %frame pair used for initilization/bootstrapping
params1.feature_detector_init = @(x)detectMinEigenFeatures(x,'MinQuality',0.06,'FilterSize',13); %feature detector initialization
params1.extract_feature_init = @(x,y)extractFeatures(x,y); %feature extractor initialization
params1.estimate_fundamental_matrix = @(x,y)estimateFundamentalMatrix(x,y,'Method','RANSAC','NumTrials',50000,'DistanceThreshold',1,'Confidence',99.99); %estimate fundamental matrix function initialization
params1.init_min_keypoints = 0; %minimum number of keypoints required after initialization (set to 0 to disable)
% processFrame:
params1.alpha_threshold = 0.25/180*pi; %threshold angle to add candidate (has to be smaller than pi/2)
params1.reprojection_error_threshold = 1; %reprojection error threshold to add candidate
params1.min_keypoints_threshold = 100; %increase reprojection error threshold for candidates for one iteration if number of tracked keypoints drops below this value (0 deactivates this feature)
params1.feature_detector = @(x,y,z)detectMinEigenFeatures(x,'MinQuality',y,'FilterSize',z); %feature detector
params1.feature_quality = 0.03; %quality of the detected Shi-Tomasi features
params1.filter_size = 7; %filter size of the Shi-Tomasi feature detector
params1.candidates_object = @cornerPoints; %feature points object
params1.estimate_world_camera_pose = @(x,y,z)estimateWorldCameraPose(x,y,z,'MaxReprojectionError',1,'Confidence',99.99,'MaxNumTrials',15000); %estimate world camera pose function
params1.pixel_distance_threshold = 2; %distance threshold for detecting new features in pixels
params1.select_uniform_threshold = 250; %threshold for the maximum number of new candidates to track - candidates are sampled uniformly if more new candidates than this are found (set to very large value to disable)
params1.KLT = [4,1,5,50]; %arguments of the KLT track - [# pyramid levels, forward-backward error threshold, block size, maximum iterations]
params1.BA_n_views = 10; %size of the BA sliding window for Malaga
params1.BA_absolute_tolerance = 0.01; %target reprojection error of BA (set to very low values to use gradient as termination criterion for the optimization)
%plotting
params1.n_current_landmarks_plotted = 100; %maximum number of current landmarks to plot in local trajectory
params1.percentile_all_landmarks = 75; %upper percentile boundary for current landmarks to plot in full trajectory
params1.past_poses_plotted = 20; %past poses to plot in local trajectory
%% 2: parking:
% initialization:
params2.ds = 2; %dataset label
params2.init_frames = [0 3]; %frame pair used for initilization/bootstrapping
params2.feature_detector_init = @(x)detectMinEigenFeatures(x,'MinQuality',0.0001,'FilterSize',11); %feature detector initialization
params2.extract_feature_init = @(x,y)extractFeatures(x,y); %feature extractor initialization
params2.estimate_fundamental_matrix = @(x,y)estimateFundamentalMatrix(x,y,'Method','RANSAC','NumTrials',50000,'DistanceThreshold',1,'Confidence',99.99); %estimate fundamental matrix function initialization
params2.init_min_keypoints = 100; %minimum number of keypoints required after initialization (set to 0 to disable)
% processFrame:
params2.alpha_threshold = 2.5/180*pi; % threshold angle to add candidate
params2.reprojection_error_threshold = 1; % reprojection error threshold to add candidate
params2.min_keypoints_threshold = 0; %increase reprojection error threshold for candidates for one iteration if number of tracked keypoints drops below this value (0 deactivates this feature)
params2.feature_detector = @(x,y,z)detectMinEigenFeatures(x,'MinQuality',y,'FilterSize',z); %feature detector
params2.feature_quality = 0.001; %quality of the detected Shi-Tomasi features
params2.filter_size = 5; %filter size of the Shi-Tomasi feature detector
params2.candidates_object = @cornerPoints; %feature points object
params2.estimate_world_camera_pose = @(x,y,z)estimateWorldCameraPose(x,y,z,'MaxReprojectionError',1,'Confidence',99.99,'MaxNumTrials',15000); %estimate world camera pose function
params2.pixel_distance_threshold = 2; %distance threshold for detecting new features in pixels
params2.select_uniform_threshold = 200; %threshold for the maximum number of new candidates to track - candidates are sampled uniformly if more new candidates than this are found (set to very large value to disable)
params2.KLT = [4,1,7,50]; %arguments of the KLT track - [# pyramid levels, forward-backward error threshold, block size, maximum iterations]
params2.BA_n_views = 15; %size of the BA sliding window for Parking
params2.BA_absolute_tolerance = 0.1; %target reprojection error of BA (set to very low values to use gradient as termination criterion for the optimization)
%plotting
params2.n_current_landmarks_plotted = 300; %maximum number of current landmarks to plot in local trajectory
params2.percentile_all_landmarks = 85; %upper percentile boundary for current landmarks to plot in full trajectory
params2.past_poses_plotted = 20; %past poses to plot in local trajectory
%% select parameter struct corresponding to dataset
params_all_sets = {params0, params1, params2};
params = params_all_sets{ds+1};
%% include n-view Bundle Adjustment (bonus feature)
params.BA = 0; %1: activate / 0: deactivate
%% Setup
if ds == 0
% need to set kitti_path to folder containing "05" and "poses"
kitti_path = 'datasets/kitti';
%assert(exist(kitti_path, 'var') ~= 0);
ground_truth = load([kitti_path '/poses/05.txt']);
ground_truth = ground_truth(:, [end-8 end-4 end]);
last_frame = 2760;
K = [7.188560000000e+02 0 6.071928000000e+02
0 7.188560000000e+02 1.852157000000e+02
0 0 1];
elseif ds == 1
% Path containing the many files of Malaga 7.
malaga_path = 'datasets/malaga-urban-dataset-extract-07';
%assert(exist(malaga_path, 'var') ~= 0);
images = dir([malaga_path ...
'/malaga-urban-dataset-extract-07_rectified_800x600_Images']);
left_images = images(3:2:end);
last_frame = length(left_images);
K = [621.18428 0 404.0076
0 621.18428 309.05989
0 0 1];
elseif ds == 2
% Path containing images, depths and all...
parking_path = 'datasets/parking';
%assert(exist(parking_path, 'var') ~= 0);
last_frame = 598;
K = load([parking_path '/K.txt']);
ground_truth = load([parking_path '/poses.txt']);
ground_truth = ground_truth(:, [end-8 end-4 end]);
else
assert(false);
end
%% Bootstrap
% need to set bootstrap_frames
if ds == 0
bootstrap_frames = params.init_frames;
img1 = imread([kitti_path '/05/image_0/' ...
sprintf('%06d.png',bootstrap_frames(1))]);
img2 = imread([kitti_path '/05/image_0/' ...
sprintf('%06d.png',bootstrap_frames(2))]);
elseif ds == 1
bootstrap_frames = params.init_frames;
img1 = rgb2gray(imread([malaga_path ...
'/malaga-urban-dataset-extract-07_rectified_800x600_Images/' ...
left_images(bootstrap_frames(1)).name]));
img2 = rgb2gray(imread([malaga_path ...
'/malaga-urban-dataset-extract-07_rectified_800x600_Images/' ...
left_images(bootstrap_frames(2)).name]));
elseif ds == 2
bootstrap_frames = params.init_frames;
img1 = rgb2gray(imread([parking_path ...
sprintf('/images/img_%05d.png',bootstrap_frames(1))]));
img2 = rgb2gray(imread([parking_path ...
sprintf('/images/img_%05d.png',bootstrap_frames(2))]));
else
assert(false);
end
camera_intrinsics = cameraIntrinsics([K(1,1) K(2,2)],[K(1,3) K(2,3)],[size(img1,1),size(img1,2)]);
[S_0,S_initial,Twc_initial,Tcw_initial] = initialization(img1,img2,camera_intrinsics,params);
%% Continuous operation
if params.BA == 1
%create table to store data of past n frames for bundle adjustment
%initialize table using data from initilization frames
S_initial.indices = (1:height(S_initial.keypoints))';
ViewId = uint32([0;params.init_frames(2)]);
Orientation = {eye(3,3);Twc_initial.Rotation};
Location = {zeros(1,3);Twc_initial.Translation};
Keypoints = {S_0.keypoints;S_initial.keypoints};
Landmarks = {S_0.landmarks;S_initial.landmarks};
Indices = {S_initial.indices;S_initial.indices};
global largest_index
largest_index = uint32([S_initial.indices(end);S_initial.indices(end)]);
BA = table(ViewId,Orientation,Location,Keypoints,Landmarks,Indices,largest_index);
largest_index = BA.largest_index(1);
else
BA = [];
end
%initialize previous state struct
%assign state of second initilization frame
prev_S = S_initial;
prev_S.candidate_keypoints = [];
prev_S.first_observation = [];
prev_S.candidate_poses = [];
prev_img = img2;
% initialize KLT
global KLT_tracker
KLT_tracker = vision.PointTracker('NumPyramidLevels',params.KLT(1),'MaxBidirectionalError',params.KLT(2),'BlockSize',[2*params.KLT(3)+1, 2*params.KLT(3)+1],'MaxIterations',params.KLT(4));
% for plotting
set(groot,'defaultAxesTickLabelInterpreter','latex');
set(groot,'defaulttextinterpreter','latex');
set(groot,'defaultLegendInterpreter','latex');
% VO process frame
for i = (bootstrap_frames(2)+1):last_frame
fprintf('\n\nProcessing frame %d\n=====================\n', i);
if ds == 0
image = imread([kitti_path '/05/image_0/' sprintf('%06d.png',i)]);
elseif ds == 1
image = rgb2gray(imread([malaga_path ...
'/malaga-urban-dataset-extract-07_rectified_800x600_Images/' ...
left_images(i).name]));
elseif ds == 2
image = im2uint8(rgb2gray(imread([parking_path ...
sprintf('/images/img_%05d.png',i)])));
else
assert(false);
end
[S,BA] = processFrame(image,prev_img,prev_S,camera_intrinsics,BA,i,params,last_frame);
prev_img = image;
prev_S = S;
% Makes sure that plots refresh.
pause(0.01);
end