-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathprocessFrame.m
207 lines (189 loc) · 11.5 KB
/
processFrame.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
function [S,BA] = processFrame(img,prev_img,prev_S,camera_intrinsics,BA,frame_num,params,last_frame)
tic
%Initialize state struct for current frame
S.keypoints = [];
S.landmarks = [];
S.indices = [];
S.candidate_keypoints = [];
S.first_observation = [];
S.candidate_poses = [];
S.candidate_keypoints_invalid_triangulation = [];
S.candidate_keypoints_invalid_reprojection = [];
%determine KLT keypoints in new frame
global KLT_tracker
release(KLT_tracker);
initialize(KLT_tracker,prev_S.keypoints,prev_img);
[S.keypoints,validity_KLT,~] = KLT_tracker(img);
S.keypoints = S.keypoints(validity_KLT,:);
prev_S.keypoints = prev_S.keypoints(validity_KLT,:);
prev_S.landmarks = prev_S.landmarks(validity_KLT,:);
disp(['fraction of keypoints tracked by KLT: ',num2str(sum(validity_KLT)),' / ',num2str(height(validity_KLT))])
%determine camera pose using P3P and MSAC
[Rwc,twc,inlier_indeces] = params.estimate_world_camera_pose(S.keypoints,prev_S.landmarks,camera_intrinsics);
Twc = rigid3d(Rwc,twc);
Tcw = rigid3d(Twc.Rotation',-Twc.Translation*Twc.Rotation');
S.keypoints = S.keypoints(inlier_indeces,:);
S.landmarks = prev_S.landmarks(inlier_indeces,:);
prev_S.keypoints = prev_S.keypoints(inlier_indeces,:);
prev_S.landmarks = prev_S.landmarks(inlier_indeces,:);
disp(['fraction of keypoints used for world camera pose estimation (MSAC): ',num2str(sum(inlier_indeces)),' / ',num2str(height(inlier_indeces))])
%----------------------------------------------------------------------
%BONUS FEATURE
%perform n-view bundle adjustment on the last n frames
if params.BA == 1 && params.BA_n_views > 0
[S,prev_S,Twc,Tcw,BA] = nViewBundleAdjustment(S,prev_S,Twc,BA,frame_num,validity_KLT,inlier_indeces,camera_intrinsics,params);
end
%----------------------------------------------------------------------
%dynamically adapt reprojection error threshold based on number of tracked
%landmarks (only for this iteration; reset to original value in next
%iteration)
if height(S.keypoints) < params.min_keypoints_threshold
params.reprojection_error_threshold = params.reprojection_error_threshold+1;
if params.ds == 0
%for KITTI also slightly lower the quality of detected features
params.feature_quality = 0.5*params.feature_quality;
end
disp(['increased reprojection error threshold to: ',num2str(params.reprojection_error_threshold)])
disp(['decreased feature quality to: ',num2str(params.feature_quality)])
end
%determine which new landmarks to add based on bearing angle and
%reprojection error
if (~isempty(prev_S.candidate_keypoints))
%first, delete keypoints invalid for too long
S.candidate_keypoints_invalid_triangulation = prev_S.candidate_keypoints_invalid_triangulation;
S.candidate_keypoints_invalid_reprojection = prev_S.candidate_keypoints_invalid_reprojection;
invalid_candidates_triangulation_idx = S.candidate_keypoints_invalid_triangulation > 4; %delete candidates invalid for more than 4 frames in a row
invalid_candidates_reprojection_idx = S.candidate_keypoints_invalid_reprojection > 4; %delete candidates with high repr. error for more than 4 frames in a row
invalid_candidates_idx = (invalid_candidates_triangulation_idx | invalid_candidates_reprojection_idx);
S.candidate_keypoints_invalid_triangulation(invalid_candidates_idx) = [];
S.candidate_keypoints_invalid_reprojection(invalid_candidates_idx) = [];
prev_S.candidate_keypoints(invalid_candidates_idx, :) = [];
prev_S.first_observation(invalid_candidates_idx, :) = [];
prev_S.candidate_poses(invalid_candidates_idx, :) = [];
disp(['Invalid triangulated candidate keypoints for too long: ',num2str(sum(invalid_candidates_triangulation_idx))])
disp(['Reproj. error candidate keypoints for too long: ',num2str(sum(invalid_candidates_reprojection_idx))])
%update tracked candidate keypoints
global KLT_tracker
release(KLT_tracker);
initialize(KLT_tracker,prev_S.candidate_keypoints,prev_img);
[klt_candidate_points,candidate_validity,~] = KLT_tracker(img);
S.candidate_keypoints = klt_candidate_points(candidate_validity,:);
S.first_observation = prev_S.first_observation(candidate_validity,:);
S.candidate_poses = prev_S.candidate_poses(candidate_validity,:);
S.candidate_keypoints_invalid_triangulation = prev_S.candidate_keypoints_invalid_triangulation(candidate_validity);
S.candidate_keypoints_invalid_reprojection = prev_S.candidate_keypoints_invalid_reprojection(candidate_validity);
%set parameters
add_candidates = zeros(height(S.candidate_keypoints),1);
angle_too_small = zeros(height(S.candidate_keypoints),1);
reprojection_error_too_large = zeros(height(S.candidate_keypoints),1);
not_valid = zeros(height(S.candidate_keypoints),1);
maxangle = 0;
%check bearing vector angle
for i=1:size(S.candidate_keypoints,1)
%triangulate candidate landmark from first and current observation
%of candidate keypoint
Twtau = rigid3d(reshape(S.candidate_poses(i,1:9),[3,3]),S.candidate_poses(i,10:12));
Ttauw = rigid3d(Twtau.Rotation',-Twtau.Translation*Twtau.Rotation');
camera_extrinsics1 = Ttauw;
camera_extrinsics2 = Tcw;
cam_matrix1 = cameraMatrix(camera_intrinsics,camera_extrinsics1);
cam_matrix2 = cameraMatrix(camera_intrinsics,camera_extrinsics2);
[triangulated_point,reprojection_error,validity] = triangulate(double(S.first_observation(i,:)),double(S.candidate_keypoints(i,:)),cam_matrix1,cam_matrix2);
if ~validity
not_valid(i) = 1;
S.candidate_keypoints_invalid_triangulation(i) = S.candidate_keypoints_invalid_triangulation(i)+1;
continue
end
S.candidate_keypoints_invalid_triangulation(i) = 0;
%determine angle between bearing vectors
tau_ray = triangulated_point-Twtau.Translation;
C_ray = triangulated_point-Twc.Translation;
cos_alpha = dot(tau_ray,C_ray)/(norm(tau_ray)*norm(C_ray));
%check whether landmark should be added
if abs(cos_alpha)<=1 % just to be sure
alpha = acos(cos_alpha);
if abs(alpha)*180/pi>maxangle
maxangle = abs(alpha)*180/pi;
end
if (abs(alpha)>=params.alpha_threshold) && ((reprojection_error < params.reprojection_error_threshold))
%add as new landmark if the triangulated landmark isn't
%negative and its reprojection error is smaller than a
%threshold
add_candidates(i) = 1;
S.keypoints(end+1,:) = S.candidate_keypoints(i,:);
S.landmarks(end+1,:) = triangulated_point;
if params.BA == 1
global largest_index
S.indices(end+1) = largest_index+1;
largest_index = largest_index+1;
end
angle_too_small(i) = 0;
reprojection_error_too_large(i) = 0;
elseif ~(abs(alpha)>=params.alpha_threshold) && ~((reprojection_error < params.reprojection_error_threshold))
angle_too_small(i) = 1;
reprojection_error_too_large(i) = 1;
S.candidate_keypoints_invalid_reprojection(i) = S.candidate_keypoints_invalid_reprojection(i)+1;
elseif ~(abs(alpha)>=params.alpha_threshold) && ((reprojection_error < params.reprojection_error_threshold))
angle_too_small(i) = 1;
reprojection_error_too_large(i) = 0;
S.candidate_keypoints_invalid_reprojection(i) = 0;
elseif (abs(alpha)>=params.alpha_threshold) && ~((reprojection_error < params.reprojection_error_threshold))
angle_too_small(i) = 0;
reprojection_error_too_large(i) = 1;
S.candidate_keypoints_invalid_reprojection(i) = S.candidate_keypoints_invalid_reprojection(i)+1;
end
end
end
disp(['candidates added: ',num2str(sum(add_candidates)),' / ',num2str(height(add_candidates))])
disp(['candidates not added due to bearing angle: ',num2str(sum(angle_too_small)),' / ',num2str(sum(angle_too_small))])
disp(['candidates not added due to reprojection error: ',num2str(sum(reprojection_error_too_large)),' / ',num2str(sum(reprojection_error_too_large))])
%remove added candidates from associated lists
add_candidates = logical(add_candidates);
angle_too_small = logical(angle_too_small);
reprojection_error_too_large = logical(reprojection_error_too_large);
not_valid = logical(not_valid);
angle_too_small = logical(angle_too_small);
S.first_observation(add_candidates,:) = [];
S.candidate_keypoints(add_candidates,:) = [];
S.candidate_poses(add_candidates,:) = [];
S.candidate_keypoints_invalid_triangulation(add_candidates) = [];
S.candidate_keypoints_invalid_reprojection(add_candidates) = [];
angle_too_small(add_candidates,:) = [];
reprojection_error_too_large(add_candidates,:) = [];
not_valid(add_candidates,:) = [];
else
angle_too_small = [];
reprojection_error_too_large = [];
not_valid = [];
end
%determine new keypoint candidates (filter out keypoints that are too similar to currently tracked keypoints or keypoint candidates)
keypoints = params.feature_detector(img,params.feature_quality,params.filter_size); %feature detector
first_observation_indicesx1 = ~ismembertol(keypoints.Location(:,1),S.keypoints(:,1),params.pixel_distance_threshold,'DataScale',1);
first_observation_indicesy1 = ~ismembertol(keypoints.Location(:,2),S.keypoints(:,2),params.pixel_distance_threshold,'DataScale',1);
if ~isempty(S.candidate_keypoints)
first_observation_indicesx2 = ~ismembertol(keypoints.Location(:,1),S.candidate_keypoints(:,1),params.pixel_distance_threshold,'DataScale',1);
first_observation_indicesy2 = ~ismembertol(keypoints.Location(:,2),S.candidate_keypoints(:,2),params.pixel_distance_threshold,'DataScale',1);
first_observation_indices = (first_observation_indicesx1 | first_observation_indicesy1) & (first_observation_indicesx2 | first_observation_indicesy2);
else
first_observation_indices = first_observation_indicesx1 | first_observation_indicesy1;
end
%draw new candidates to add based on a uniform distribution over the image
new_candidates = params.candidates_object(keypoints.Location(first_observation_indices,:));
first_observation_keypoints = selectUniform(new_candidates,params.select_uniform_threshold,size(img));
first_observation = first_observation_keypoints.Location;
first_observation_indeces = [zeros(height(S.candidate_keypoints),1);ones(height(first_observation),1)];
first_observation_indeces = logical(first_observation_indeces);
%add new keypoint candidates
S.first_observation = [S.first_observation;first_observation];
S.candidate_keypoints = [S.candidate_keypoints;first_observation];
S.candidate_keypoints_invalid_triangulation = [S.candidate_keypoints_invalid_triangulation;zeros(height(first_observation),1)];
S.candidate_keypoints_invalid_reprojection = [S.candidate_keypoints_invalid_reprojection;zeros(height(first_observation),1)];
disp(['new/current candidate keypoints: ',num2str(height(first_observation)),' / ',num2str(height(S.candidate_keypoints))])
%determine camera poses of keypoints at their first observation
pose = [reshape(Twc.Rotation,[1,9]),reshape(Twc.Translation,[1,3])];
candidate_poses = [repmat(pose,height(first_observation_keypoints),1),frame_num*ones(height(first_observation_keypoints.Location),1)];
S.candidate_poses = [S.candidate_poses;candidate_poses];
%plot results
plot_result(S,Twc,img,frame_num,angle_too_small,reprojection_error_too_large,first_observation_indeces,not_valid,params,last_frame)
toc
end