-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
881 lines (675 loc) · 32.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
"""Computer Science Capstone C964 | Nicole Mau | nmau@wgu.edu | 001336361 | eric_bot | email response in corporations"""
import collections
import csv
import logging
import os
import pickle
import random
import sqlite3 as sql
import gensim
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import smart_open
import vectorize as vectorize
from imblearn.over_sampling import SMOTE
from nltk import word_tokenize, SnowballStemmer
from nltk.corpus import stopwords
from sklearn import metrics, tree
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics import ConfusionMatrixDisplay
from sklearn.metrics import classification_report
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import OneHotEncoder
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from email_helper import send_message
logging.getLogger('googleapicliet.discovery_cache').setLevel(logging.ERROR)
# I want a version of this email every x amount of time. Will use this function timer
# https://realpython.com/python-timer/
# if customer placed order recently (similar items)
# if customer has not placed order recently
# if customers have sent similar emails - send escalation email or notice out.
# create sqllite sql database for future sensitive customer data live/practical application would have a separate
# server for customer data
# db corrupted somehow -renamed and recreated db file-
connect_database = sql.connect('my_db_for_capstone.db')
###############################################################################
# create table in db running into issues with .execute command
# https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlcursor-execute.html
# connect to local database create table in db running into issues with .execute command
# https://dev.mysql.com/doc/connector-python/en/connector-python-api-mysqlcursor-execute.html
# https://stackoverflow.com/questions/53128279/how-to-print-output-from-sqlite3-in-python
#
def clear_customer_data():
try:
delete_all = "DROP TABLE customer"
connect_database.execute(delete_all)
except ValueError as e:
print('An error occurred: %s' % e)
# clear_customer_data()
def clear_order_data():
try:
delete_all = "DROP TABLE orders;"
connect_database.execute(delete_all)
except ValueError as e:
print('An error occurred: %s' % e)
# clear_order_data()
###############################################################################
def create_part_data():
try:
connect_database.execute('''
CREATE TABLE IF NOT EXISTS parts (
id INTEGER PRIMARY KEY AUTOINCREMENT,
part TEXT,
quantity INTEGER )
''')
except ValueError as e:
print('An error occurred: %s' % e)
create_part_data()
###############################################################################
def create_associatedparts_data():
try:
connect_database.execute('''
CREATE TABLE IF NOT EXISTS parts (
id INTEGER PRIMARY KEY AUTOINCREMENT,
part name,
quantity INTEGER )
''')
except ValueError as e:
print('An error occurred: %s' % e)
create_associatedparts_data()
def add_parts_data():
try:
sql = 'INSERT INTO parts(part, quantity) values(?,?)'
parts_data = [('ring head', 50),
('diamond', 25),
('yellow gold ring', 25),
('white gold ring', 25),
('platinum ring', 25),
('earring posts', 5),
('earring backs', 5),
('bracelet', 10),
('clasps', 10),
('necklace', 1000),
]
connect_database.executemany(sql, parts_data)
except ValueError as e:
print('An error occurred: %s' % e)
#add_parts_data()
###############################################################################
def create_products_data():
try:
connect_database.execute('''
CREATE TABLE IF NOT EXISTS products (
id INTEGER PRIMARY KEY AUTOINCREMENT,
product TEXT,
quantity INTEGER )
''')
except ValueError as e:
print('An error occurred: %s' % e)
# create_products_data()
def alter_products_data():
try:
connect_database.execute('''
ALTER TABLE inventory RENAME TO products
''')
except ValueError as e:
print('An error occurred: %s' % e)
# alter_products_data()
def add_products_data():
try:
sql = 'INSERT INTO products(product, quantity) values(?,?)'
products_data = [('ring', 50),
('brooch', 25),
('earrings', 5),
('bracelet', 10),
('necklace', 1000),
]
connect_database.executemany(sql, products_data)
except ValueError as e:
print('An error occurred: %s' % e)
# add_products_data()
def products_data():
try:
select_all_table = "SELECT * FROM products "
cursor = connect_database.execute(select_all_table)
results = cursor.fetchall()
print(results)
except ValueError as e:
print('An error occurred: %s' % e)
print('Products database:')
products_data()
def drop_view():
try:
drop = "DROP VIEW IF EXISTS remaining_view "
cursor = connect_database.execute(drop)
results = cursor.fetchall()
print(results)
except ValueError as e:
print('An error occurred: %s' % e)
# drop_view()
###############################################################################
def create_customer_table():
try:
connect_database.execute('''
CREATE TABLE IF NOT EXISTS customer (
id INTEGER PRIMARY KEY AUTOINCREMENT,
name TEXT,
email TEXT )
''')
except ValueError as e:
print('An error occurred: %s' % e)
create_customer_table()
def add_customer_data():
try:
sql = 'INSERT INTO customer(name, email) values(?,?)'
customer_table = [('John Doe', 'jdoe@email.com'),
('Johnny Doe', 'jhdoe@email.com'),
('Jane Doe', 'jedoe@email.com'),
('Janey Do', 'jydoe@email.com'),
('Joey Doe', 'jodoe@email.com'),
('Katsu Dog', 'kdog@email.com'),
('M Niece', 'mniece@email.com'),
('A Child', 'achild@email.com'),
('Mochi Dog', 'mdog@email.com'),
('Nicole Mau', 'nmau@wgu.edu')
]
connect_database.executemany(sql, customer_table)
except ValueError as e:
print('An error occurred: %s' % e)
# add_customer_data()
def add_or_update_customer_data():
try:
sql_update = "INSERT OR REPLACE INTO customer (name, email) VALUES ('John Doe', 'jdoe@email.com')"
connect_database.execute(sql_update)
except ValueError as e:
print('An error occurred: %s' % e)
# add_or_update_customer_data()
# deletes any row with name and email = remove duplicate entries/customer data
def update_table_rows():
try:
delete_statement = 'DELETE FROM customer WHERE rowid > (SELECT MIN(rowid) FROM customer c2 WHERE customer.name = ' \
'c2.name AND customer.email = c2.email); '
connect_database.execute(delete_statement)
except ValueError as e:
print('An error occurred: %s' % e)
# update_table_rows()
# print neatly https://stackoverflow.com/questions/305378/list-of-tables-db-schema-dump-etc-using-the-python-sqlite3
# -api
def customer_data():
try:
select_all_table = "SELECT * FROM customer "
cursor = connect_database.execute(select_all_table)
results = cursor.fetchall()
print(results)
except ValueError as e:
print('An error occurred: %s' % e)
print('customer database:')
customer_data()
###############################################################################
# order table initialized
###############################################################################
def create_order_table():
try:
connect_database.execute('''
CREATE TABLE IF NOT EXISTS orders (
id INTEGER NOT NULL
PRIMARY KEY AUTOINCREMENT,
status TEXT,
email TEXT,
notes TEXT,
product TEXT,
orderqty INTEGER
)
''')
except ValueError as e:
print('An error occurred: %s' % e)
create_order_table()
# added column to table inventory
def add_column_order():
try:
connect_database.execute("ALTER TABLE products ADD part1 INTEGER, part2 INTEGER, part 3 INTEGER")
except ValueError as e:
print('An error occurred: %s' % e)
# add_column_order()
# use this to update OR add new customer specific ones can add later with UI
def add_order_data():
try:
sql = 'INSERT INTO orders( status, email, notes, product, orderqty) values(?,?,?,?,?)'
updated_order_table = [('en-route', 'jdoe@email.com', 'cc', 'earrings', 1),
('pending', 'jhdoe@email.com', 'cc', 'ring', 1),
('at hub', 'jdoe@email.com', 'wire', 'necklace', 1),
('pending', 'jdoe@email.com', 'cc', 'bracelet', 1),
('delayed', 'jdoe@email.com', 'cc', 'ring', 1),
('delivered', 'kdog@email.com', 'cc', 'brooch', 1),
('delivered', 'mniece@email.com', 'cc', 'necklace', 1),
('delivered', 'achild@email.com', 'cc', 'ring', 1),
('delivered', 'mdog@email.com', 'cc', 'ring', 1)
]
connect_database.executemany(sql, updated_order_table)
except ValueError as e:
print('An error occurred: %s' % e)
# add_order_data()
# printing all orders
def order_data():
try:
select_all_table = "SELECT * FROM orders"
cursor = connect_database.execute(select_all_table)
results = cursor.fetchall()
print(results)
except ValueError as e:
print('An error occurred: %s' % e)
print('orders database:')
order_data()
# https://www.krazyprogrammer.com/2020/12/how-to-search-data-from-sqlite-in.html
# remove duplicate entries
def update_table_rows_order():
try:
delete_statement = 'DELETE FROM orders WHERE rowid > (SELECT MIN(rowid) FROM orders o2 WHERE orders.email = ' \
'o2.email AND orders.id = o2.id); '
connect_database.execute(delete_statement)
except ValueError as e:
print('An error occurred: %s' % e)
# update_table_rows_order()
# change line if need to update/insert
def add_or_update_order_data():
try:
sql_update = "INSERT OR REPLACE INTO orders (status, email, notes) VALUES ('at hub', 'jfoo@email.com', 'cc') "
connect_database.execute(sql_update)
except ValueError as e:
print('An error occurred: %s' % e)
# add_or_update_order_data()
# remove duplicate orders
def delete_extra_entries():
try:
swl = "DELETE FROM orders WHERE email LIKE 'jfoo@email.com'"
connect_database.execute(swl)
except ValueError as e:
print('An error occurred: %s' % e)
# delete_extra_entries()
# attempted to add a view to track inventory changes as orders are placed but it pushed the limits of sqllite. For this simulation
# it will have to wait for practical application to be able to auto order as inventory decreases.
#####################################################################################
# db commit
connect_database.commit()
#####################################################################################
# machine learning model
#####################################################################################
# Set file names for train and test data data import from CSV
test_data_dir = os.path.join(gensim.__path__[0], 'test', 'test_data')
# kaggle dataset customer complaints
csv_train_file = os.path.join(test_data_dir, 'complaints_processed.csv')
# created pseudo customer emails (the most common emails)
csv_test_file = os.path.join(test_data_dir, 'emails from Seattle Jewelry Company.csv')
# cleaned data for naiive bayes and doc2vec analysis
csv_tmp_file = os.path.join(test_data_dir, 'data_part_.csv')
# test emails i created that represent the majority of outgoing customer communications
csv_response = os.path.join(test_data_dir, 'SJCCompanyOutgoingEmails.csv')
# saved model (saves 15 minutes of training time)
pickle_save = os.path.join(test_data_dir, 'eric_model.pkl')
# issue with values
# https://www.youtube.com/watch?v=OS2m0f2gVJ0
missing_narrative = ['N/a', "Nan", "NaN", np.nan, "na", "Na", None]
# needed to ignore first column (importing duplicate first col)
# https://www.statology.org/pandas-read-csv-ignore-first-column/
# read csv in chunks and put into a clean csv file for analysis
df_iterator = pd.read_csv(
csv_train_file,
chunksize=10000)
for i, df_chunk in enumerate(df_iterator):
# Set writing mode to append after first chunk
mode = 'w' if i == 0 else 'a'
# Add header if it is the first chunk
header = i == 0
df_chunk.to_csv(
csv_tmp_file,
index=False, # Skip index column
header=header,
mode=mode)
# dataframe df initialized
df = pd.read_csv(csv_tmp_file)
# expand column widths
pd.set_option('display.max_colwidth', None)
print(df)
# show value counts
print(df['product'].value_counts())
# remove null values
print(df.isnull().sum())
print(df.isnull().any())
# display NaN values and product number
nan_values = df[df['narrative'].isna()]
# show nan values
print(nan_values)
# drop wasn't working, needed to add parameter
# https://stackoverflow.com/questions/49712002/pandas-dropna-function-not-working
df.dropna(inplace=True)
# if email not in file-prompt customer to respond with email used to place order
# print out dataframe value counts making sure nan values were dropped
df['product'].value_counts().plot(kind='bar')
# bar plot labels and label orientation fixed (visual #1)
plt.bar(x='product', height=3.0, width=3.0)
plt.xticks(rotation=10)
plt.title('Email Description Counts')
plt.show()
# initialized dataframe complaints_dataframe for analysis by ML algorithms
complaints_dataframe = df[['product', 'narrative']]
# search for these terms and will use these for prediction and analysis later
search_terms = {'credit_reporting': 0, 'debt_collection': 1, 'mortgages_and_loans': 2, 'credit_card': 3,
'retail_banking': 4
}
# show value counts by product
print(complaints_dataframe['product'].value_counts())
# map search terms to products
complaints_dataframe['search_terms'] = complaints_dataframe['product'].map(search_terms)
# stemmer
stemmer = SnowballStemmer(language='english')
# stop words
stop_words = stopwords.words("english")
# load pickle model (saved model)
model = pickle.load(open(pickle_save, 'rb'))
# tokenizer - removes words less than 2 and ignores Xx
def tokenizer(text):
token = [word for word in word_tokenize(text) if
(len(word) > 3 and len(word.strip('Xx/')) > 2)]
tokens = map(str.lower, token)
stem = [stemmer.stem(item) for item in tokens if (item not in stop_words)]
return stem
# vectorizer
vectorize = TfidfVectorizer(analyzer=tokenizer)
# sets narrative to tfidf vectorizer
x_for = vectorize.fit_transform(df['narrative'][:10000].values.astype('U'))
print(complaints_dataframe.info(verbose=True))
# expand column size
pd.set_option('display.max_colwidth', None)
# use SMOTE for irregularly shaped data types
x_sm, y_sm = SMOTE().fit_resample(x_for, df['product'][:10000])
# initialize x and y train and test
X_train, X_test, y_train, y_test = train_test_split(x_sm, y_sm, test_size=0.3, random_state=0)
# checking shapes of each and theyre irregular- need SMOTE to fix
# issue with fit here
# https://www.geeksforgeeks.org/ml-handling-imbalanced-data-with-smote-and-near-miss-algorithm-in-python/
# followed SMOTE guide because i ran into an error with size of data differences.
print('this is xtrain', X_train.shape)
print('this is xtest', X_test.shape)
print('this is y_train', y_train.shape)
print('this is y_test', y_test.shape)
# send data through multinomial naiive bayes algorithm
mnb = MultinomialNB()
# fit data to naiive bayes
mnb.fit(X_train, y_train)
# predict outcomes
X_test_predict = mnb.predict(X_test)
X_pred = mnb.predict(x_for)
# check classification
print(classification_report(y_test, X_test_predict))
# check accuracy
print('MNB accuracy score: ', mnb.score(X_train, y_train))
###############################################################################
# read in text for doc2vec
def read_corpus(file, tokens_only=False):
with smart_open.open(file, encoding="iso-8859-1") as f:
for i, line in enumerate(f):
tokens = gensim.utils.simple_preprocess(line)
if tokens_only:
yield tokens
else:
# For training data, add tags
yield gensim.models.doc2vec.TaggedDocument(tokens, [i])
# train with kaggle dataset
train_corpus = list(read_corpus(csv_tmp_file))
# test with seattle jewelry company customer emails
test_corpus = list(read_corpus(csv_test_file))
# Train corpus print
print('this is train corpus', train_corpus[:2])
# Test corpus print
print('this is test corpus', test_corpus[:2])
###############################################################################
# Train model
# adding max_vocab_size=20000 to reduce memory issue
# https://stackoverflow.com/questions/59050644/memoryerror-unable-to-allocate-array-with-shape-and-data-type-float32-while-usi
# model = gensim.models.doc2vec.Doc2Vec(vector_size=50, min_count=2, epochs=40, max_vocab_size=20000)
###############################################################################
# build vocab
# model.build_vocab(train_corpus)
###############################################################################
# check how often jewelry appears in train corpus
print(f"Word 'jewelry' appeared {model.wv.get_vecattr('jewelry', 'count')} times in train corpus.")
###############################################################################
# Train model
#
#
# model.train(train_corpus, total_examples=model.corpus_count, epochs=model.epochs)
###############################################################################
# check trained model for terms as vectors
list_of_terms = ['jewelry', 'pearls', 'necklace', 'earrings', 'gemstone']
# introductory- will expand terms in real life data with 'order status', 'exchange', 'return', 'refund'
vector = model.infer_vector(list_of_terms)
print(list_of_terms)
print(vector)
# pickle save model
# pickle.dump(model, open(pickle_save, 'wb'))
# 2nd visual aide, Decision tree classifier
dc = DecisionTreeClassifier()
dc1 = dc.fit(X_train, y_train)
y_predict = dc.predict(X_test)
# check accuracy of decision tree
print("Decision Tree Classifier Accuracy check:", metrics.accuracy_score(y_test, y_predict))
# added tree plot and confusion matrix for display
dc2 = tree.DecisionTreeClassifier(random_state=0)
dcs2 = dc2.fit(X_train, y_train)
tree.plot_tree(dcs2, fontsize=2)
dcs = SVC(random_state=0)
dcs.fit(X_train, y_train)
# 3rd visual aide confusion matrix display
ConfusionMatrixDisplay.from_estimator(dcs, X_test, y_test)
plt.show()
# Assessment of model ranking test vs train data
ranks = []
second_ranks = []
for doc_id in range(len(test_corpus)):
inferred_vector = model.infer_vector(train_corpus[doc_id].words)
sims = model.dv.most_similar([inferred_vector], topn=len(model.dv))
rank = [docid for docid, sim in sims].index(doc_id)
ranks.append(rank)
second_ranks.append(sims[1])
# document tank in train corpus
counter = collections.Counter(ranks)
print('this is ranking', counter)
doc_id = random.randint(0, len(train_corpus) - 1)
# Compare
print('Train Document ({}): «{}»\n'.format(doc_id, ' '.join(train_corpus[doc_id].words)))
print('this is doc_id', doc_id)
sim_id = random.randint(0, len(train_corpus) - 1)
print('this is sim_id', sim_id)
print('Similar Document {}: «{}»\n'.format(sim_id, ' '.join(train_corpus[sim_id].words)))
# Pick a random doc from test to compare
doc_id2 = random.randint(0, len(test_corpus) - 1)
print('this is docid2', doc_id2)
inferred_vect = model.infer_vector(test_corpus[doc_id2].words)
sims = model.dv.most_similar([inferred_vect], topn=len(model.dv))
# added .words after 426 and 431.
# Compare to train corpus
print('Test Document ({}): «{}»\n'.format(doc_id2, ' '.join(test_corpus[doc_id2].words)))
print(u'SIMILAR/DISSIMILAR DOCS PER MODEL %s:\n' % model)
for label, index in [('MOST', 0), ('SECOND-MOST', 1), ('MEDIAN', len(sims) // 2), ('LEAST', len(sims) - 1)]:
print(u'%s %s: «%s»\n' % (label, sims[index], ' '.join(train_corpus[sims[index][0]].words)))
# check to see if model agrees
print('Document ({}): «{}»\n'.format(doc_id, ' '.join(train_corpus[doc_id].words)))
print(u'SIMILAR/DISSIMILAR DOCS PER MODEL %s:\n' % model)
for label, index in [('MOST', 0), ('SECOND-MOST', 1), ('MEDIAN', len(sims) // 2), ('LEAST', len(sims) - 1)]:
print(u'%s %s: «%s»\n' % (label, sims[index], ' '.join(train_corpus[sims[index][0]].words)))
def find_index(input):
o = open(csv_test_file, 'r')
my_data = csv.reader(o)
index = 0
for row in my_data:
# print row
if row[0] == input:
return index
else:
index += 1
enc = OneHotEncoder(handle_unknown='ignore')
# creating instance of one-hot-encoder
# passing ['search_terms'] column (label encoded values of ['search_terms']s)
enc_df = pd.DataFrame(enc.fit_transform(complaints_dataframe[['search_terms']]).toarray())
# merge with main df complaints_dataframe on key values
complaints_dataframe = complaints_dataframe.join(enc_df)
print(complaints_dataframe)
def response_to_email(email_input):
with open(csv_test_file, 'r+') as af:
line = af.readlines()
for row in line:
if email_input in row:
print("\nEmail exists in 'emails from Seattle Jewelry Company.csv' file")
print("\nrows of data for given email:", row)
predict_vec = vectorize.transform([row])
print(predict_vec)
predict_this = mnb.predict(predict_vec)
print('this is predict row ', predict_this)
cursor = connect_database.execute("SELECT * FROM ORDERS where email = ? ", (email_input,))
results = cursor.fetchall()
print("Order information for selected email:", ', '.join(map(str, results)))
# eventually these caategories will be returns, repair, resize, exchanges, credit card, escalation, and so on
if predict_this == 'retail_banking':
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"In regards to your previous email",
f"Thank you, {email_input} for contacting us. Your order status is {results}. "
f"To initiate a return please use the package return label included in your purchase box. "
f"Please include the original item and packing slip inside and affix the shipping label to the outside of the box."
f"Please take the package to the nearest UPS at your earliest convenience. "
f"The return once received will take approximately 2 days to process and 7 days to refund the funds to your original method of payment."
f"We hope you have a great day and thank you for your support of SJC.",
user_id='me')
elif predict_this == 'debt_collection':
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"In regards to your previous email",
f"Thank you, {email_input} for contacting us {results}. please contact our billing department 555.555.5555")
elif predict_this == 'credit_reporting':
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"In regards to your previous email",
f"Thank you, {email_input} for contacting us {results}. Please contact your bank or the company of the credit card used at purchase")
elif predict_this == 'mortgages_and_loans':
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"In regards to your previous email",
f"Thank you, {email_input} for contacting us. We are unable to support mortgage issues. Please contact your bank.")
elif predict_this == 'credit_card':
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"In regards to your previous email",
f"Thank you, {email_input} for contacting us {results}. Please contact your bank or the company of the credit card used at purchase")
else:
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"In regards to your previous email",
f"Thank you, {email_input} for contacting us {results}. Please contact your bank or the company of the credit card used at purchase")
# if email not in file-prompt +?ustomer to respond with email used to place order
def promotional_emails_out_to_customers(product_type_input):
with open(csv_test_file, 'r+') as af:
line = af.readlines()
for row in line:
if product_type_input in row:
# Please enter product type (earrings, ring, necklace, bracelet, brooch"
print(
"##################################################################################################")
print("\nrows of data for given product:", row.count)
if product_type_input == 'earrings':
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"Here are earrings we thought you might like",
f"Thank you, for your interest in the earrings. These earrings might also be of interest to you.")
elif product_type_input == 'ring':
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"Here's a ring we thought you might like",
f"Thank you, for your interest in the ring. These rings might also be of interest to you.")
elif product_type_input == 'necklace':
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"Here's a necklace we thought you might like",
f"Thank you, for your interest in the necklace. These necklace might also be of interest to you.")
elif product_type_input == 'bracelet':
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"Here's a bracelet we thought you might like",
f"Thank you, for your interest in the bracelet. These bracelet might also be of interest to you.")
elif product_type_input == 'brooch':
send_message("eric.capstone.api@gmail.com", "eric.capstone.api@gmail.com",
"Here's a brooch we thought you might like",
f"Thank you, for your interest in the brooch. This brooch might also be of interest to you.")
# if email not in file-prompt customer to respond with email used to place order
###############################################################################
############################# GUI #############################################
###############################################################################
print(
"########################################################################################################################")
if __name__ == '__main__':
print("Computer Science Capstone C964 | Nicole Mau | nmau@wgu.edu | "
"001336361 | eric_bot | email_response_in_corporations bot")
# loop until user is satisfied
isExit = True
while isExit:
print("\nOptions:")
print("1. Print All Order Data")
print("2. Get a Specific Order Status with ID")
print("3. Get all Customer Data")
print("4. Get Specific Customer/order Information by email")
print("5. Add New Customer")
print("6. Send Marketing Emails by Product Type to existing customers")
print("7. Products Data")
print("8. Exit the Program")
option = input("Chose an option (1,2,3,4,5,6,7, or 8): ")
# print all order data
if option == "1":
order_data()
# print order info from specific order ID
elif option == "2":
print("Please enter your order ID")
orderID = input(" ")
cursor = connect_database.execute("SELECT * FROM ORDERS where id = ?", (orderID,))
results = cursor.fetchall()
print(', '.join(map(str, results)))
# print all customer data
elif option == "3":
customer_data()
# print specific order data by email
elif option == "4":
print("Please enter customer email")
email_input = input(" ")
c2 = connect_database.execute("SELECT * FROM CUSTOMER where email = ? ", (email_input,))
result = c2.fetchall()
print("Customer information for email address:", ', '.join(map(str, result)))
cursor = connect_database.execute("SELECT * FROM ORDERS where email = ? ", (email_input,))
results = cursor.fetchall()
print("Order information for selected email:", ', '.join(map(str, results)))
response_to_email(email_input)
# https://stackoverflow.com/questions/17308872/check-whether-string-is-in-csv
# doc_id3 = find_index(email_input)
# print(doc_id3)
# inferred_vectors = model.infer_vector(test_corpus[doc_id3].words)
# sim2 = model.dv.most_similar([inferred_vect], topn=len(model.dv))
# if email not in file-prompt customer to respond with email used to place order
# option to exit
elif option == '5':
print("Please enter customer name")
name_input = input("")
print("Please enter customer email")
email_input = input(" ")
c3 = connect_database.execute("INSERT OR REPLACE INTO customer (name, email) values (?,?)",
(name_input, email_input))
result = c3.fetchall()
print("New Customer Added to database:", ', '.join(map(str, result)))
customer_data()
elif option == '6':
print("Please enter product type (earrings, ring, necklace, bracelet, brooch)")
product_type_input = input("")
c3 = connect_database.execute("SELECT * from orders WHERE product=?", (product_type_input,))
result = c3.fetchall()
print(result)
promotional_emails_out_to_customers(product_type_input)
elif option == '7':
c4 = connect_database.execute("SELECT * from products WHERE ifnull(quantity, '') = ''")
result2 = c4.fetchall()
print("current product inventory levels ", products_data())
print("low inventory of these products", result2)
products_data()
elif option == '8':
isExit = False
else:
print("Invalid option, please try again!")
# main - END