-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_original_transformer_model.py
562 lines (402 loc) · 17.6 KB
/
train_original_transformer_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
import torch
import pandas as pd
import numpy as np
import random
from sklearn.preprocessing import LabelEncoder
from sklearn.utils.class_weight import compute_class_weight
import time
import datetime
from sklearn.metrics import classification_report,confusion_matrix
import random
import time
import torch.nn as nn
from transformers import (
AutoModelForSequenceClassification ,
AutoConfig ,
AutoTokenizer ,
AdamW ,
get_linear_schedule_with_warmup
)
import matplotlib.pyplot as plt
import seaborn as sns
from matplotlib import rc
from matplotlib.ticker import MaxNLocator
from os import getcwd , listdir
from os.path import join
from utils import (
check_accuracy ,
eval_model ,
format_time ,
get_predictions_on_test ,
get_predictions ,
good_update_interval ,
make_smart_batches_on_test ,
make_smart_batches ,
plot_training_history ,
show_confusion_matrix
)
Path_To_Save_Model = 'your path'
Path_To_Save_Submission_DataFrame = 'your path'
MODEL_NAME = 'model_name'
# checking for GPU availability
if torch.cuda.is_available():
# Tell PyTorch to use the GPU.
device = torch.device("cuda")
print('There are %d GPU(s) available.' % torch.cuda.device_count())
print('We will use the GPU:', torch.cuda.get_device_name(0))
# If not...
else:
print('No GPU available, using the CPU instead.')
device = torch.device("cpu")
# Use plot styling from seaborn.
sns.set(style='darkgrid')
# Increase the plot size and font size.
sns.set(font_scale=1.5)
plt.rcParams["figure.figsize"] = (16,12)
# Set the seed value all over the place to make this reproducible.
seed_val = 42
random.seed(seed_val)
np.random.seed(seed_val)
torch.manual_seed(seed_val)
torch.cuda.manual_seed_all(seed_val)
# Importing dataset directories"
curr_dir = getcwd()
drive_dir = join(curr_dir , 'drive','MyDrive')
dataset_dir = join(drive_dir,'Codalab','Offensive Language Identification','Dataset')
## Loading training data
train_df_path = join(dataset_dir,'train.csv')
# Load the dataset into a pandas dataframe.
train_df = pd.read_csv(train_df_path)
# Report the number of sentences.
print('Number of training sentences: {:,}\n'.format(train_df.shape[0]))
# Display 10 random rows from the data.
train_df.sample(10)
# labelencoding the target vars
le = LabelEncoder()
train_df['label'] = le.fit_transform(train_df['label'])
# Loading `train_sentences` and `train_labels`
train_sentences = train_df['text'].values
train_labels = train_df['label'].values
# Saving Class Names
class_names = le.inverse_transform(range(0,6))
# Loading the validation data
val_df_path = join(dataset_dir,'dev.csv')
# Load the dataset into a pandas dataframe.
val_df = pd.read_csv(val_df_path)
# Report the number of sentences.
print('Number of validation sentences: {:,}\n'.format(val_df.shape[0]))
# Display 10 random rows from the data.
val_df.sample(10)
val_df['label'] = le.transform(val_df['label'])
# Loading `val_sentences` and `val_labels`
val_sentences = val_df['text'].values
val_labels = val_df['label'].values
# Loading the test data
test_df_path = join(dataset_dir,'test.csv')
# Load the dataset into a pandas dataframe.
test_df = pd.read_csv(test_df_path)
# Report the number of sentences.
print('Number of test sentences: {:,}\n'.format(test_df.shape[0]))
# Display 10 random rows from the data.
test_df.sample(10)
test_df['label'] = le.transform(test_df['label'])
# Loading `test_sentences` and `test_labels`
test_sentences = test_df['text'].values
test_labels = test_df['label'].values
#computing the class weights
class_wts = compute_class_weight('balanced', np.unique(train_labels), train_labels)
print(f"Class weights => {class_wts}")
# Smart Batching of the training data"
model_name = MODEL_NAME ## could be any transformer model
# Load the BERT tokenizer.
print(f'Loading {model_name} tokenizer...')
tokenizer = AutoTokenizer.from_pretrained(model_name,use_fast=False) ## use_fast flag is needed for IndicBERT model
lengths = []
for text in train_sentences:
lengths.append(len(text))
## visualizing before tokenizing
plt.scatter(range(0, len(lengths)), lengths, marker="|")
plt.xlabel('Sample Number')
plt.ylabel('Sequence Length')
plt.title('Samples BEFORE Tokenizing')
plt.show()
# Tokenizing the sequences
## setting max_input_length
max_input_length = 400
full_input_ids = []
labels = []
## Tokenizing each sample
print('Tokenizing {:,} training samples...'.format(len(train_sentences)))
# Choose an interval on which to print progress updates.
update_interval = good_update_interval(total_iters=len(train_sentences), num_desired_updates=10)
# For each training example...
for text in train_sentences:
# Report progress.
if ((len(full_input_ids) % update_interval) == 0):
print(' Tokenized {:,} samples.'.format(len(full_input_ids)))
# Tokenize the sentence.
input_ids = tokenizer.encode(text=text,
add_special_tokens=True,
max_length=max_input_length,
truncation=True,
padding=False)
# Add the tokenized result to our list.
full_input_ids.append(input_ids)
print('DONE.')
print('{:>10,} samples'.format(len(full_input_ids)))
# Get all of the lengths.
unsorted_lengths = [len(x) for x in full_input_ids]
## Visualizations after tokenizing
plt.scatter(range(0, len(unsorted_lengths)), unsorted_lengths, marker="|")
plt.xlabel('Sample Number')
plt.ylabel('Sequence Length')
plt.title('Samples BEFORE Sorting')
plt.show()
# Sort the two lists together by the length of the input sequence.
train_samples = sorted(zip(full_input_ids, train_labels), key=lambda x: len(x[0]))
print(f"Shortest sample: { len(train_samples[0][0]) }")
print(f"Longest sample: { len(train_samples[-1][0]) }")
# Get the new list of lengths after sorting.
sorted_lengths = [len(s[0]) for s in train_samples]
## plotting lenghts of sequences after sorting
plt.plot(range(0, len(sorted_lengths)), sorted_lengths)
plt.xlabel('Sample Number')
plt.ylabel('Sequence Length')
plt.title('Samples after Sorting')
plt.show()
#################### Random Batch Selections ####################
## setting our batch size
batch_size = 16
# List of batches that we'll construct.
batch_ordered_sentences = []
batch_ordered_labels = []
print('Creating training batches of size {:}'.format(batch_size))
# Loop over all of the input samples...
while len(train_samples) > 0:
# Report progress.
if ((len(batch_ordered_sentences) % 100) == 0):
print(' Selected {:,} batches.'.format(len(batch_ordered_sentences)))
# `to_take` is our actual batch size. It will be `batch_size` until
# we get to the last batch, which may be smaller.
to_take = min(batch_size, len(train_samples))
# Pick a random index in the list of remaining samples to start
# our batch at.
select = random.randint(0, len(train_samples) - to_take)
# Select a contiguous batch of samples starting at `select`.
batch = train_samples[select:(select + to_take)]
# Each sample is a tuple--split them apart to create a separate list of
# sequences and a list of labels for this batch.
batch_ordered_sentences.append([s[0] for s in batch])
batch_ordered_labels.append([s[1] for s in batch])
# Remove these samples from the list.
del train_samples[select:select + to_take]
print('\n DONE - {:,} batches.'.format(len(batch_ordered_sentences)))
print(batch_ordered_sentences[0])
############ Padding #########
py_inputs = []
py_attn_masks = []
py_labels = []
# For each batch...
for (batch_inputs, batch_labels) in zip(batch_ordered_sentences, batch_ordered_labels):
batch_padded_inputs = []
batch_attn_masks = []
# First, find the longest sample in the batch.
# Note that the sequences do currently include the special tokens!
max_size = max([len(sen) for sen in batch_inputs])
#print('Max size:', max_size)
# For each input in this batch...
for sen in batch_inputs:
# How many pad tokens do we need to add?
num_pads = max_size - len(sen)
# Add `num_pads` padding tokens to the end of the sequence.
padded_input = sen + [tokenizer.pad_token_id]*num_pads
# Define the attention mask--it's just a `1` for every real token
# and a `0` for every padding token.
attn_mask = [1] * len(sen) + [0] * num_pads
# Add the padded results to the batch.
batch_padded_inputs.append(padded_input)
batch_attn_masks.append(attn_mask)
# Our batch has been padded, so we need to save this updated batch.
# We also need the inputs to be PyTorch tensors, so we'll do that here.
py_inputs.append(torch.tensor(batch_padded_inputs))
py_attn_masks.append(torch.tensor(batch_attn_masks))
py_labels.append(torch.tensor(batch_labels))
# Check the number of token reductions because of smart batching
# Get the new list of lengths after sorting.
padded_lengths = []
# For each batch...
for batch in py_inputs:
# For each sample...
for s in batch:
# Record its length.
padded_lengths.append(len(s))
######################## Checking token reduction ###############
# Sum up the lengths to the get the total number of tokens after smart batching.
smart_token_count = np.sum(padded_lengths)
# To get the total number of tokens in the dataset using fixed padding, it's
# as simple as the number of samples times our `max_len` parameter (that we
# would pad everything to).
fixed_token_count = len(train_sentences) * max_input_length
# Calculate the percentage reduction.
prcnt_reduced = (fixed_token_count - smart_token_count) / float(fixed_token_count)
print('Total tokens:')
print(' Fixed Padding: {:,}'.format(fixed_token_count))
print(' Smart Batching: {:,} ({:.1%} less)'.format(smart_token_count, prcnt_reduced))
# Load the model configuration from the transformers library using AutoConfig
# Load the Config object, with an output configured for classification.
config = AutoConfig.from_pretrained(pretrained_model_name_or_path=model_name,
num_labels=len(class_names))
print('Config type:', str(type(config)), '\n')
# Load the model from the transformers library using AutoModelForSequenceClassification"
# Load the pre-trained model for classification, passing in the `config` from above.
model = AutoModelForSequenceClassification.from_pretrained(
pretrained_model_name_or_path=model_name,
config = config
)
print('\nModel type:', str(type(model)))
# set the model on cuda
model.cuda()
# Loading Optimizer
optimizer = AdamW(model.parameters(),
lr = 2e-5,
eps = 1e-8
)
# Loading lr scheduler
epochs = 4
# Total number of training steps is [number of batches] x [number of epochs].
# Note that it's the number of *batches*, not *samples*!
total_steps = len(py_inputs) * epochs
# Create the learning rate scheduler.
scheduler = get_linear_schedule_with_warmup(optimizer,
num_warmup_steps = 0, # Default value in run_glue.py
num_training_steps = total_steps)
# Training Loop
# We'll store a number of quantities such as training and validation loss,
# validation accuracy, and timings.
training_stats = {
'epoch':[],
'train_loss':[],
'Training Time':[],
'val_loss':[],
'Validation Time':[],
'train_acc':[],
'val_acc':[]
}
# Update every `update_interval` batches.
update_interval = good_update_interval(total_iters=len(py_inputs), num_desired_updates=10)
# Measure the total training time for the whole run.
total_t0 = time.time()
best_accuracy = 0
# For each epoch...
for epoch_i in range(0, epochs):
predictions = []
true_labels = []
# ========================================
# Training
# ========================================
# Perform one full pass over the training set.
print("")
print('======== Epoch {:} / {:} ========'.format(epoch_i + 1, epochs))
# At the start of each epoch (except for the first) we need to re-randomize
# our training data.
if epoch_i > 0:
# Use our `make_smart_batches` function (from 6.1.) to re-shuffle the
# dataset into new batches.
(py_inputs, py_attn_masks, py_labels) = make_smart_batches(train_sentences, train_labels, batch_size,tokenizer,max_input_length)
print('Training on {:,} batches...'.format(len(py_inputs)))
# Measure how long the training epoch takes.
t0 = time.time()
# Reset the total loss for this epoch.
total_train_loss = 0
# Put the model into training mode.
model.train()
# For each batch of training data...
for step in range(0, len(py_inputs)):
# Progress update every, e.g., 100 batches.
if step % update_interval == 0 and not step == 0:
# Calculate elapsed time in minutes.
elapsed = format_time(time.time() - t0)
# Calculate the time remaining based on our progress.
steps_per_sec = (time.time() - t0) / step
remaining_sec = steps_per_sec * (len(py_inputs) - step)
remaining = format_time(remaining_sec)
# Report progress.
print(' Batch {:>7,} of {:>7,}. Elapsed: {:}. Remaining: {:}'.format(step, len(py_inputs), elapsed, remaining))
# Copy the current training batch to the GPU using the `to` method.
b_input_ids = py_inputs[step].to(device)
b_input_mask = py_attn_masks[step].to(device)
b_labels = py_labels[step].to(device)
# Always clear any previously calculated gradients before performing a
# backward pass.
model.zero_grad()
# Perform a forward pass (evaluate the model on this training batch).
output = model(b_input_ids,
token_type_ids=None,
attention_mask=b_input_mask,
labels=b_labels)
# Accumulate the training loss over all of the batches so that we can
# calculate the average loss at the end.
loss = output.loss
logits = output.logits
# Move logits and labels to CPU
logits = logits.detach().cpu().numpy()
label_ids = b_labels.to('cpu').numpy()
# Store predictions and true labels
predictions.append(logits)
true_labels.append(label_ids)
# Accumulate the training loss over all of the batches so that we can
# calculate the average loss at the end.
total_train_loss += loss.item()
# Perform a backward pass to calculate the gradients.
loss.backward()
# Clip the norm of the gradients to 1.0.
# This is to help prevent the "exploding gradients" problem.
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
# Update parameters and take a step using the computed gradient.
optimizer.step()
# Update the learning rate.
scheduler.step()
# Calculate the average loss over all of the batches.
avg_train_loss = total_train_loss / len(py_inputs)
training_accuracy = check_accuracy(predictions,true_labels)
# Measure how long this epoch took.
training_time = format_time(time.time() - t0)
print("")
print(" Average training loss: {0:.2f}".format(avg_train_loss))
print(" Training Accuracy: {0:.2f}".format(training_accuracy))
print(" Training epoch took: {:}".format(training_time))
(py_inputs, py_attn_masks, py_labels) = make_smart_batches(val_sentences, val_labels, batch_size ,tokenizer,max_input_length)
val_loss,val_accuracy,validation_time = eval_model(model,py_inputs, py_attn_masks, py_labels)
if val_accuracy > best_accuracy:
torch.save(model.state_dict(), 'best_model_state.bin')
best_accuracy = val_accuracy
# Record all statistics from this epoch.
print("")
print(" Average validation loss: {0:.2f}".format(val_loss))
print(" Validation Accuracy: {0:.2f}".format(val_accuracy))
print(" Validation epoch took: {:}".format(validation_time))
training_stats['epoch'].append(epoch_i + 1)
training_stats['train_loss'].append(avg_train_loss)
training_stats['Training Time'].append(training_time)
training_stats['val_loss'].append(val_loss)
training_stats['Validation Time'].append(validation_time)
training_stats['train_acc'].append(training_accuracy)
training_stats['val_acc'].append(val_accuracy)
print(f'Best val accuracy: {best_accuracy}')
model.load_state_dict(torch.load('best_model_state.bin'))
print("")
print("Training complete!")
print("Total training took {:} (h:mm:ss)".format(format_time(time.time()-total_t0)))
plot_training_history(training_stats)
## Evaluating Performance Over Training Set
(py_inputs, py_attn_masks, py_labels) = make_smart_batches(train_sentences, train_labels, batch_size ,tokenizer,max_input_length)
y_pred , y_true = get_predictions(py_inputs, py_attn_masks, py_labels)
print(classification_report(y_true, y_pred, target_names=class_names))
cm = confusion_matrix(y_true, y_pred)
show_confusion_matrix(cm, class_names)
## Evaluating Performance Over Validation Set
(py_inputs, py_attn_masks, py_labels) = make_smart_batches(val_sentences, val_labels, batch_size ,tokenizer,max_input_length)
y_pred , y_true = get_predictions(py_inputs, py_attn_masks, py_labels)
print(classification_report(y_true, y_pred, target_names=class_names))
cm = confusion_matrix(y_true, y_pred)
show_confusion_matrix(cm, class_names)