-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathdataset_augmentation.py
40 lines (31 loc) · 1.34 KB
/
dataset_augmentation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from PIL import Image
import os
"""
Script for flipping all training images horizontally in order to double the size of the training set.
Changes labels accordingly if necessary (left flipped -> right).
"""
PATH_TO_IMAGES = 'images\\training2'
images = []
labels = []
total = 0
for folder in os.listdir(PATH_TO_IMAGES):
folder_path = os.path.join(PATH_TO_IMAGES, str(folder))
total += len(os.listdir(folder_path))
counter = 0
for folder in os.listdir(PATH_TO_IMAGES):
folder_path = os.path.join(PATH_TO_IMAGES, str(folder))
for image in os.listdir(folder_path):
counter += 1
progress = counter/total*100
print(f"[{int(round(progress)/10+1)*'='}>{int(10-round(progress)/10+1)*'.'}] {round(progress, 2)}% done "
f"({counter}/{total} images flipped!)")
# open the original image
original_img = Image.open(os.path.join(folder_path, image))
if not os.path.exists(os.path.join(PATH_TO_IMAGES, str(folder+'_flipped'))):
os.makedirs(os.path.join(PATH_TO_IMAGES, str(folder+'_flipped')))
# Flip the original image horizontally
horz_img = original_img.transpose(method=Image.FLIP_LEFT_RIGHT)
horz_img.save(os.path.join(PATH_TO_IMAGES, str(folder+'_flipped'), image))
# close all our files object
original_img.close()
horz_img.close()