forked from atulsinha007/Domain-adaptation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcluster.py
100 lines (69 loc) · 2.36 KB
/
cluster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
import numpy as np
import chromosome
import random
import copy
indim = 32
outdim = 5
def distance ( chromoA, chromoB):
same_num = 0
assert (chromoA is not None)
assert (chromoB is not None)
for con1, con2 in zip(chromoA.conn_arr, chromoB.conn_arr):
if con1.innov_num == con2.innov_num:
same_num += 1
else:
break
total_len = len(chromoA.conn_arr) + len(chromoB.conn_arr)
diff_sum = total_len - 2 * same_num
return (-same_num + diff_sum)
def give_new_head(dic):
#new_head = chromosome.Chromosome(indim, outdim)
new_head = None
new_cluster_head = []
for key in dic.keys():
st = dic[key]
assert ( len(st) != 0)
minfreq = -10000000
for element in st:
mp = {}
for element2 in st:
dis = distance(element, element2)
if dis not in mp.keys():
mp[dis] = 1
else:
mp[dis] += 1
maxx = max(mp.values())
if maxx > minfreq:
minfreq = maxx
new_head = element
if minfreq == 1:
new_head = random.choice(list(st))
new_cluster_head.append(new_head)
return new_cluster_head
def give_cluster_head(chromo_list, k):
#print("hi")
predefined_iter = 20
#print(chromo_list)
current_cluster_head_list = random.sample(chromo_list, k)
#current_cluster_head_list = chromo_list[:k]
#print(current_cluster_head_list)
dic = { key : set([]) for key in current_cluster_head_list}
for iter in range(predefined_iter):
dic = {key: set([key]) for key in current_cluster_head_list}
for chromo in chromo_list:
#min_head = None
minn = 10000000000000
assert (len(current_cluster_head_list) != 0)
for cluster_head in current_cluster_head_list:
assert (chromo is not None)
if chromo == cluster_head and len(current_cluster_head_list) != 1:
continue
dist = distance(chromo, cluster_head)
if minn > dist:
minn = dist
min_head = cluster_head
dic[min_head].add(chromo)
current_cluster_head_list = give_new_head(dic)
return current_cluster_head_list
if __name__ == 'main':
test()