-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathautograder.py
160 lines (122 loc) · 5.86 KB
/
autograder.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import random
from argparse import ArgumentParser
from simulator import Simulator
from state import *
from probability import *
from agents import MarkovAgent, ParticleAgent
from grade_helpers import load_test, convert_solution
SCALE_FACTOR = 15 # DO NOT ALTER
WAIT_TIME = 0.2
VERBOSE = False
# These can 100% be written as one, but to keep things easy to understand and
# simplicitic we keep them as below
def roundThoughts(thoughts):
for key, value in thoughts.items():
thoughts[key] = round(value, 12)
return thoughts
def markov_listen_test(simulator, state, solution):
markov_agent = MarkovAgent(GameStateHandler(state).get_valid_positions())
score = simulator.simulate_probability_agent(markov_agent, markov_agent.listen)
if type(solution) == int:
return score >= solution
return roundThoughts(markov_agent.thoughts()) == roundThoughts(convert_solution(solution))
def markov_predict_test(simulator, state, solution):
markov_agent = MarkovAgent(GameStateHandler(state).get_valid_positions())
score = simulator.simulate_probability_agent(markov_agent, markov_agent.predict)
if type(solution) == int:
return score >= solution
return roundThoughts(markov_agent.thoughts()) == roundThoughts(convert_solution(solution))
def particle_predict_test(simulator, state, solution):
particle_agent = ParticleAgent(GameStateHandler(state).get_valid_positions())
score = simulator.simulate_probability_agent(particle_agent, particle_agent.predict)
if type(solution) == int:
return score >= solution
return roundThoughts(particle_agent.thoughts()) == roundThoughts(convert_solution(solution))
def particle_listen_test(simulator, state, solution):
particle_agent = ParticleAgent(GameStateHandler(state).get_valid_positions())
score = simulator.simulate_probability_agent(particle_agent, particle_agent.listen)
if type(solution) == int:
return score >= solution
return roundThoughts(particle_agent.thoughts()) == roundThoughts(convert_solution(solution))
def particle_reset_test(simulator, state, solution):
# Don't actually need simulator for this test
# To make our lives simple we will match the maps open tiles (for divisibility purposes) when giving a particle count
valid_positions = GameStateHandler(state).get_valid_positions()
grid = ParticleGrid(valid_positions, len(valid_positions) * SCALE_FACTOR)
particle_dist = grid.get_particle_distribution()
# Mess up the distribution
for key in particle_dist:
particle_dist[key] = random.random()
# Reset the distribution
grid.reset()
return roundThoughts(grid.get_particle_distribution()) == roundThoughts(convert_solution(solution))
def particle_reweight_test(simulator, state, solution):
# Don't actually need simulator for this test
# To make our lives simple we will match the maps open tiles (for divisibility purposes) when giving a particle count
valid_positions = GameStateHandler(state).get_valid_positions()
grid = ParticleGrid(valid_positions, len(valid_positions) * SCALE_FACTOR)
# Generate a random distribution
dist = { key:random.random() for key in grid.get_particle_distribution() }
# Reweight the particles
grid.reweight_particles(dist)
return roundThoughts(grid.get_particle_distribution()) == roundThoughts(convert_solution(solution))
def test(tests, tester):
total_marks, earned_marks = 0, 0
for test in tests:
name, map_file, seed, solution = load_test(test)
total_marks += 1
try:
# Run the test
state = GameState(map_file)
random.seed(seed)
sim = Simulator(map_file, WAIT_TIME)
sim.verbose(VERBOSE)
result = tester(sim, state, solution)
earned = int(result)
print("Testing: {}\t [{}/{}]".format(name, earned, 1))
earned_marks += earned
except NotImplementedError as e:
print("Testing {}\t [{}]\t [0/1]".format(name, e))
return earned_marks, total_marks
if __name__ == "__main__":
parser = ArgumentParser(description = "Running Autograder for Assignment 4")
parser.add_argument("-v", "--verbose", help = "Displays the actions the agent is taking during the simulation",
required = False, default = "")
parser.add_argument("-w", "--waitTime", type = float,
help = "How long the simulation waits before taking another action", required = False, default=0.1)
# Setting up based on arguments
args = parser.parse_args()
VERBOSE = args.verbose
if args.waitTime :
WAIT_TIME = args.waitTime
# Start the tests
total_marks, earned_marks = 0, 0
print("------ Question 1 ------")
e, t = test(["listen/small_markov_test", "listen/small_markov_test_2",
"listen/markov_confirm_test", "listen/markov_confirm_test_2"], markov_listen_test)
total_marks += t
earned_marks += e
print("\n------ Question 2 ------")
e, t = test(["predict/small_markov_test", "predict/medium_markov_test",
"predict/markov_confirm_test", "predict/markov_confirm_test_2"], markov_predict_test)
total_marks += t
earned_marks += e
print("\n------ Question 3 ------")
e, t = test(["particles/open_test", "particles/entity_test"], particle_reset_test)
total_marks += t
earned_marks += e
print("\n------ Question 4 ------")
e, t = test(["particles/weight_test", "particles/weight_test_2"], particle_reweight_test)
total_marks += t
earned_marks += e
print("\n------ Question 5 ------")
e, t = test(["listen/small_particle_test", "listen/small_particle_test_2",
"listen/particle_confirm_test", "listen/particle_confirm_test_2"], particle_listen_test)
total_marks += t
earned_marks += e
print("\n------ Question 6 ------")
e, t = test(["predict/small_particle_test", "predict/medium_particle_test",
"predict/particle_confirm_test", "predict/particle_confirm_test_2"], particle_predict_test)
total_marks += t
earned_marks += e
print("\n\nTotal Grade: {}/{}".format(earned_marks, total_marks))