forked from Anirudh-Muthukumar/Causal-Mediation-Analysis
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathattention_intervention_subset_selection.py
204 lines (160 loc) · 7.89 KB
/
attention_intervention_subset_selection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
import os
import pickle
from argparse import ArgumentParser
import numpy as np
import pandas as pd
import torch
from tqdm import tqdm # tqdm_notebook as tqdm
from transformers import GPT2Tokenizer
from attention_intervention_winobias import get_interventions_winobias
from attention_intervention_winogender import get_interventions_winogender
from attention_utils import perform_interventions
from experiment import Model
np.random.seed(1)
torch.manual_seed(1)
def perform_interventions_single(interventions, model, layers_to_adj, heads_to_adj, effect_types=('indirect', 'direct'), search=False):
"""Perform multiple interventions"""
results_list = []
for intervention in tqdm(interventions):
results = perform_intervention_single(intervention, model, layers_to_adj, heads_to_adj, effect_types, search)
results_list.append(results)
return results_list
def perform_intervention_single(intervention, model, layers_to_adj, heads_to_adj, effect_types=('indirect', 'direct'), search=False):
"""Perform intervention and return results for specified effects"""
x = intervention.base_strings_tok[0] # E.g. The doctor asked the nurse a question. He
x_alt = intervention.base_strings_tok[1] # E.g. The doctor asked the nurse a question. She
with torch.no_grad():
candidate1_base_prob, candidate2_base_prob = model.get_probabilities_for_examples_multitoken(
x,
intervention.candidates_tok)
candidate1_alt_prob, candidate2_alt_prob = model.get_probabilities_for_examples_multitoken(
x_alt,
intervention.candidates_tok)
candidate1 = ' '.join(intervention.candidates[0]).replace('Ġ', '')
candidate2 = ' '.join(intervention.candidates[1]).replace('Ġ', '')
odds_base = candidate2_base_prob / candidate1_base_prob
odds_alt = candidate2_alt_prob / candidate1_alt_prob
total_effect = (odds_alt - odds_base) / odds_base
results = {
'base_string1': intervention.base_strings[0],
'base_string2': intervention.base_strings[1],
'candidate1': candidate1,
'candidate2': candidate2,
'candidate1_base_prob': candidate1_base_prob,
'candidate2_base_prob': candidate2_base_prob,
'odds_base': odds_base,
'candidate1_alt_prob': candidate1_alt_prob,
'candidate2_alt_prob': candidate2_alt_prob,
'odds_alt': odds_alt,
'total_effect': total_effect,
}
for effect_type in effect_types:
candidate1_probs_head, candidate2_probs_head = model.attention_intervention_single_experiment(
intervention, effect_type, layers_to_adj, heads_to_adj, search)
odds_intervention_head = candidate2_probs_head / candidate1_probs_head
effect_head = (odds_intervention_head - odds_base) / odds_base
if search:
results[effect_type + "_effect_head"] = effect_head.tolist()
else:
results[effect_type + "_effect_head"] = effect_head
return results
def top_k(k, interventions, mean_effect, model, model_type, data, out_dir):
json_data = {'head': [], 'val': []}
for i in range(1, k+1):
top_k = i
idx = np.argpartition(mean_effect, mean_effect.size - top_k, axis=None)[-top_k:]
# get top k
res = np.column_stack(np.unravel_index(idx, mean_effect.shape))
results = perform_interventions_single(interventions, model, layers_to_adj=res[:,0], heads_to_adj=res[:,1])
df1 = pd.DataFrame(results)
effect1 = np.stack(df1['indirect_effect_head'].to_numpy()) # Convert column to 2d ndarray (num_examples x num_layers)
mean_effect1 = effect1.mean(axis=0)
json_data['val'].append(mean_effect1)
json_data['head'].append((res[:,0][0], res[:,1][0]))
pickle.dump(json_data, open(out_dir + "/topk_" + model_type + "_" + data + ".pickle", "wb" ))
def get_all_contrib(model_type, model, tokenizer, interventions, data, out_dir):
json_data = {}
results = perform_interventions(interventions, model)
df = pd.DataFrame(results)
effect = np.stack(df['indirect_effect_model'].to_numpy()) # Convert column to 2d ndarray (num_examples x num_layers)
mean_effect = effect.mean(axis=0)
json_data['mean_effect_model'] = mean_effect
effect = np.stack(df['indirect_effect_layer'].to_numpy()) # Convert column to 2d ndarray (num_examples x num_layers)
mean_effect = effect.mean(axis=0)
json_data['mean_effect_layer'] = mean_effect
effect = np.stack(df['indirect_effect_head'].to_numpy()) # Convert column to 2d ndarray (num_examples x num_layers)
mean_effect = effect.mean(axis=0)
json_data['mean_effect_head'] = mean_effect
pickle.dump(json_data, open(out_dir + "/mean_effect_" + model_type + "_" + data + ".pickle", "wb" ))
return mean_effect
def greedy(k, interventions, model, model_type, data, out_dir):
greedy_filename = out_dir + "/greedy_" + model_type + "_" + data + ".pickle"
if os.path.exists(greedy_filename):
print('loading precomputed greedy values')
res = pickle.load( open(greedy_filename, "rb" ))
obj_list_gr = res['val']
layer_list = [i[0] for i in res['head']]
heads_list = [i[1] for i in res['head']]
k = k - len(obj_list_gr)
else:
layer_list = []
heads_list = []
obj_list_gr = []
json_data = {}
json_data_inter = {}
for i in range(k):
results = perform_interventions_single(interventions, model, layers_to_adj=np.array(layer_list),
heads_to_adj=np.array(heads_list), search=True)
df = pd.DataFrame(results)
effect = np.stack(df['indirect_effect_head'].to_numpy()) # Convert column to 2d ndarray (num_examples x num_layers)
mean_effect1 = effect.mean(axis=0)
json_data_inter[i] = effect
for j in zip(layer_list, heads_list):
mean_effect1[j] = -100
idx = np.argpartition(mean_effect1, mean_effect1.size - 1, axis=None)[-1:]
res = np.column_stack(np.unravel_index(idx, mean_effect1.shape))
obj_list_gr.append(np.max(mean_effect1))
layer_list.append(res[:,0][0])
heads_list.append(res[:,1][0])
pickle.dump(json_data_inter, open(out_dir + "/greedy_intermediate_" + model_type + "_" + data + ".pickle", "wb" ))
json_data['val'] = obj_list_gr
json_data['head'] = [i for i in zip(layer_list, heads_list)]
pickle.dump(json_data, open(greedy_filename, "wb" ))
if __name__ == '__main__':
ap = ArgumentParser(description="Neuron subset selection.")
ap.add_argument('--model_type', type=str, choices=['distil-gpt2', 'gpt2', 'gpt2-medium', 'gpt2-large'], default='gpt2')
ap.add_argument('--algo', type=str, choices=['topk', 'greedy'], default='topk')
ap.add_argument('--k', type=int, default=1)
ap.add_argument('--data', type=str, choices=['winobias', 'winogender'], default='winogender')
ap.add_argument('--out_dir', type=str, default='results')
args = ap.parse_args()
model_type = args.model_type
algo = args.algo
k = args.k
data = args.data
out_dir = args.out_dir
if not os.path.exists(out_dir):
os.makedirs(out_dir)
if args.data == 'winobias':
data_ext = 'wb'
else:
data_ext = 'wg'
tokenizer = GPT2Tokenizer.from_pretrained(model_type)
model = Model(output_attentions=True, device='cuda', gpt2_version=model_type)
if data == 'winobias':
interventions, _ = get_interventions_winobias(model_type, do_filter=True, split='dev', model=model,
tokenizer=tokenizer, device='cuda')
else:
interventions, _ = get_interventions_winogender(model_type, do_filter=True, stat='bls', model=model,
tokenizer=tokenizer, device='cuda')
if algo == 'topk':
mean_effect_filename = out_dir + "/mean_effect_" + model_type + "_" + data_ext + ".pickle"
if os.path.exists(mean_effect_filename):
print('loading precomputed mean effect')
mean_effect_res = pickle.load( open(mean_effect_filename, "rb" ))
mean_effect = mean_effect_res['mean_effect_head']
else:
mean_effect = get_all_contrib(model_type, model, tokenizer, interventions, data_ext, out_dir)
top_k(int(k), interventions, mean_effect, model, model_type, data_ext, out_dir)
else:
greedy(int(k), interventions, model, model_type, data_ext, out_dir)